IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16964-d1006995.html
   My bibliography  Save this article

Hydrogen for Cooking: A Review of Cooking Technologies, Renewable Hydrogen Systems and Techno-Economics

Author

Listed:
  • Mulako D. Mukelabai

    (Centre for Renewable Energy Systems Technology (CREST), Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire LE11 3TU, UK)

  • K. G. U. Wijayantha

    (Centre for Renewable Energy Systems Technology (CREST), Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire LE11 3TU, UK
    Centre for Renewable and Low-Carbon Energy, Cranfield University, College Road, Bedfordshire, Cranfield MK43 0AL, UK)

  • Richard E. Blanchard

    (Centre for Renewable Energy Systems Technology (CREST), Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire LE11 3TU, UK)

Abstract

About 3 billion people use conventional carbon-based fuels such as wood, charcoal, and animal dung for their daily cooking needs. Cooking with biomass causes deforestation and habitat loss, emissions of greenhouse gases, and smoke pollution that affects people’s health and well-being. Hydrogen can play a role in enabling clean and safe cooking by reducing household air pollution and reducing greenhouse gas emissions. This first-of-a-kind review study on cooking with hydrogen assessed existing cooking technologies and hydrogen systems in developing country contexts. Our critical assessment also included the modelling and experimental studies on hydrogen. Renewable hydrogen systems and their adoptability in developing countries were analysed. Finally, we presented a scenario for hydrogen production pathways in developing countries. Our findings indicated that hydrogen is attractive and can be safely used as a cooking fuel. However, radical and disruptive models are necessary to transform the traditional cooking landscape. There is a need to develop global south-based hydrogen models that emphasize adoptability and capture the challenges in developing countries. In addition, the techno-economic assumptions of the models vary significantly, leading to a wide-ranging levelized cost of electricity. This finding underscored the necessity to use comprehensive techno-economic assumptions that can accurately predict hydrogen costs.

Suggested Citation

  • Mulako D. Mukelabai & K. G. U. Wijayantha & Richard E. Blanchard, 2022. "Hydrogen for Cooking: A Review of Cooking Technologies, Renewable Hydrogen Systems and Techno-Economics," Sustainability, MDPI, vol. 14(24), pages 1-30, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16964-:d:1006995
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16964/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16964/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tian, Zhihua & Tian, Yanfang & Shen, Liangping & Shao, Shuai, 2021. "The health effect of household cooking fuel choice in China: An urban-rural gap perspective," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    2. Topriska, Evangelia & Kolokotroni, Maria & Dehouche, Zahir & Wilson, Earle, 2015. "Solar hydrogen system for cooking applications: Experimental and numerical study," Renewable Energy, Elsevier, vol. 83(C), pages 717-728.
    3. Long Seng To & Anna Bruce & Paul Munro & Edoardo Santagata & Iain MacGill & Manu Rawali & Atul Raturi, 2021. "A research and innovation agenda for energy resilience in Pacific Island Countries and Territories," Nature Energy, Nature, vol. 6(12), pages 1098-1103, December.
    4. Sharma, Atul & Chen, C.R. & Murty, V.V.S. & Shukla, Anant, 2009. "Solar cooker with latent heat storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1599-1605, August.
    5. Roth, Michael Buchdahl & Jaramillo, Paulina, 2017. "Going nuclear for climate mitigation: An analysis of the cost effectiveness of preserving existing U.S. nuclear power plants as a carbon avoidance strategy," Energy, Elsevier, vol. 131(C), pages 67-77.
    6. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    7. Eriksson, E.L.V. & Gray, E.MacA., 2019. "Optimization of renewable hybrid energy systems – A multi-objective approach," Renewable Energy, Elsevier, vol. 133(C), pages 971-999.
    8. Wang, Jianyou & Zhang, Wei & Yang, Tao & Yu, Yunzu & Liu, Chuang & Li, Bin, 2022. "Numerical and experimental investigation on heat transfer enhancement by adding fins on the pot in a domestic gas stove," Energy, Elsevier, vol. 239(PE).
    9. Alina E. Kozhukhova & Stephanus P. du Preez & Dmitri G. Bessarabov, 2021. "Catalytic Hydrogen Combustion for Domestic and Safety Applications: A Critical Review of Catalyst Materials and Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    10. Ramanathan, R. & Ganesh, L. S., 1995. "Energy resource allocation incorporating qualitative and quantitative criteria: An integrated model using goal programming and AHP," Socio-Economic Planning Sciences, Elsevier, vol. 29(3), pages 197-218, September.
    11. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    12. Li, H.B. & Wong, T.T. & Leung, C.W. & Probert, S.D., 2006. "Thermal performances and CO emissions of gas-fired cooker-top burners," Applied Energy, Elsevier, vol. 83(12), pages 1326-1338, December.
    13. Herez, Amal & Ramadan, Mohamad & Khaled, Mahmoud, 2018. "Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 421-432.
    14. Urban, F. & Benders, R.M.J. & Moll, H.C., 2007. "Modelling energy systems for developing countries," Energy Policy, Elsevier, vol. 35(6), pages 3473-3482, June.
    15. Lorién Gracia & Pedro Casero & Cyril Bourasseau & Alexandre Chabert, 2018. "Use of Hydrogen in Off-Grid Locations, a Techno-Economic Assessment," Energies, MDPI, vol. 11(11), pages 1-16, November.
    16. Stewart, W.R. & Shirvan, K., 2022. "Capital cost estimation for advanced nuclear power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    17. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. S. Tao & M. Y. Ru & W. Du & X. Zhu & Q. R. Zhong & B. G. Li & G. F. Shen & X. L. Pan & W. J. Meng & Y. L. Chen & H. Z. Shen & N. Lin & S. Su & S. J. Zhuo & T. B. Huang & Y. Xu & X. Yun & J. F. Liu & X, 2018. "Quantifying the rural residential energy transition in China from 1992 to 2012 through a representative national survey," Nature Energy, Nature, vol. 3(7), pages 567-573, July.
    19. de Vries, Harmen & Levinsky, Howard B., 2020. "Flashback, burning velocities and hydrogen admixture: Domestic appliance approval, gas regulation and appliance development," Applied Energy, Elsevier, vol. 259(C).
    20. Sorace, Marco & Gandiglio, Marta & Santarelli, Massimo, 2017. "Modeling and techno-economic analysis of the integration of a FC-based micro-CHP system for residential application with a heat pump," Energy, Elsevier, vol. 120(C), pages 262-275.
    21. Vanesa Castán Broto & Lucy Stevens & Emmanuel Ackom & Julia Tomei & Priti Parikh & Iwona Bisaga & Long Seng To & Joshua Kirshner & Yacob Mulugetta, 2017. "A research agenda for a people-centred approach to energy access in the urbanizing global south," Nature Energy, Nature, vol. 2(10), pages 776-779, October.
    22. Fumey, B. & Buetler, T. & Vogt, U.F., 2018. "Ultra-low NOx emissions from catalytic hydrogen combustion," Applied Energy, Elsevier, vol. 213(C), pages 334-342.
    23. Urban, F. & Benders, R.M.J. & Moll, H.C., 2007. "Corrigendum to "Modelling energy systems for developing countries": [Energy Policy 35 (2007) 3473-3482]," Energy Policy, Elsevier, vol. 35(9), pages 4764-4765, September.
    24. Topriska, Evangelia & Kolokotroni, Maria & Dehouche, Zahir & Novieto, Divine T. & Wilson, Earle A., 2016. "The potential to generate solar hydrogen for cooking applications: Case studies of Ghana, Jamaica and Indonesia," Renewable Energy, Elsevier, vol. 95(C), pages 495-509.
    25. Narasimha D. Rao & Jihoon Min & Alessio Mastrucci, 2019. "Energy requirements for decent living in India, Brazil and South Africa," Nature Energy, Nature, vol. 4(12), pages 1025-1032, December.
    26. Di Wu & Haotian Zheng & Qing Li & Ling Jin & Rui Lyu & Xiang Ding & Yaoqiang Huo & Bin Zhao & Jingkun Jiang & Jianmin Chen & Xiangdong Li & Shuxiao Wang, 2022. "Toxic potency-adjusted control of air pollution for solid fuel combustion," Nature Energy, Nature, vol. 7(2), pages 194-202, February.
    27. Benjamin K. Sovacool & Raphael J. Heffron & Darren McCauley & Andreas Goldthau, 2016. "Energy decisions reframed as justice and ethical concerns," Nature Energy, Nature, vol. 1(5), pages 1-6, May.
    28. Lahkar, Pranab J. & Samdarshi, S.K., 2010. "A review of the thermal performance parameters of box type solar cookers and identification of their correlations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1615-1621, August.
    29. Barbieri, Enrico Saverio & Spina, Pier Ruggero & Venturini, Mauro, 2012. "Analysis of innovative micro-CHP systems to meet household energy demands," Applied Energy, Elsevier, vol. 97(C), pages 723-733.
    30. Vyas, Sangita & Gupta, Aashish & Khalid, Nazar, 2021. "Gender and LPG use after government intervention in rural north India," World Development, Elsevier, vol. 148(C).
    31. Mei, Bing & Barnoon, Pouya & Toghraie, Davood & Su, Chia-Hung & Nguyen, Hoang Chinh & Khan, Afrasyab, 2022. "Energy, exergy, environmental and economic analyzes (4E) and multi-objective optimization of a PEM fuel cell equipped with coolant channels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    32. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    33. Shonali Pachauri & Miguel Poblete-Cazenave & Arda Aktas & Matthew J. Gidden, 2021. "Access to clean cooking services in energy and emission scenarios after COVID-19," Nature Energy, Nature, vol. 6(11), pages 1067-1076, November.
    34. Pu, Yuchen & Li, Qi & Zou, Xueli & Li, Ruirui & Li, Luoyi & Chen, Weirong & Liu, Hong, 2021. "Optimal sizing for an integrated energy system considering degradation and seasonal hydrogen storage," Applied Energy, Elsevier, vol. 302(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor Hugo Souza de Abreu & Victória Gonçalves Ferreira Pereira & Laís Ferreira Crispino Proença & Fabio Souza Toniolo & Andrea Souza Santos, 2023. "A Systematic Study on Techno-Economic Evaluation of Hydrogen Production," Energies, MDPI, vol. 16(18), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kashyap, S. Rahul & Pramanik, Santanu & Ravikrishna, R.V., 2023. "A review of solar, electric and hybrid cookstoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Herez, Amal & Ramadan, Mohamad & Khaled, Mahmoud, 2018. "Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 421-432.
    4. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    5. Aquilanti, Alessia & Tomassetti, Sebastiano & Muccioli, Matteo & Di Nicola, Giovanni, 2023. "Design and experimental characterization of a solar cooker with a prismatic cooking chamber and adjustable panel reflectors," Renewable Energy, Elsevier, vol. 202(C), pages 405-418.
    6. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    7. Apaolaza-Pagoaga, Xabier & Carrillo-Andrés, Antonio & Rodrigues Ruivo, Celestino, 2022. "Experimental thermal performance evaluation of different configurations of Copenhagen solar cooker," Renewable Energy, Elsevier, vol. 184(C), pages 604-618.
    8. Aisha Kolawole & Sola Adesola & Glauco De Vita, 2017. "A Disaggregated Analysis of Energy Demand in Sub-Saharan Africa," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 224-235.
    9. Mertzanis, Charilaos & Garas, Samy & Abdel-Maksoud, Ahmed, 2020. "Integrity of financial information and firms' access to energy in developing countries," Energy Economics, Elsevier, vol. 92(C).
    10. Nikolas Schöne & Boris Heinz, 2023. "Semi-Systematic Literature Review on the Contribution of Hydrogen to Universal Access to Energy in the Rationale of Sustainable Development Goal Target 7.1," Energies, MDPI, vol. 16(4), pages 1-42, February.
    11. Winston Moore & Mika Korkeakoski & Jyrki Luukkanen & Laron Alleyne & Abdullahi Abdulkadri & Noel Brown & Therese Chambers & Orlando Costa & Alecia Evans & Sidonia McKenzie & Dwight Reid & Luis Vazquez, 2016. "Modelling Long-Run Energy Development Plans: The Case of Barbados," EcoMod2016 9403, EcoMod.
    12. Maarten Vanierschot & Ashmore Mawire, 2023. "Heat-Transfer Mechanisms in a Solar Cooking Pot with Thermal Energy Storage," Energies, MDPI, vol. 16(7), pages 1-12, March.
    13. Sunil Indora & Tara C. Kandpal, 2020. "Solar energy for institutional cooking in India: prospects and potential," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7153-7175, December.
    14. al Irsyad, M. Indra & Halog, Anthony & Nepal, Rabindra, 2018. "Estimating the impacts of financing support policies towards photovoltaic market in Indonesia: A social-energy-economy-environment (SE3) model simulation," Working Papers 2018-09, University of Tasmania, Tasmanian School of Business and Economics.
    15. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    16. Luis Puigjaner & Mar Pérez-Fortes & José M. Laínez-Aguirre, 2015. "Towards a Carbon-Neutral Energy Sector: Opportunities and Challenges of Coordinated Bioenergy Supply Chains-A PSE Approach," Energies, MDPI, vol. 8(6), pages 1-48, June.
    17. Ole Jørgen Nydal, 2023. "Heat Storage for Cooking: A Discussion on Requirements and Concepts," Energies, MDPI, vol. 16(18), pages 1-27, September.
    18. Saini, Prashant & Pandey, Sushant & Goswami, Shruti & Dhar, Atul & Mohamed, M.E. & Powar, Satvasheel, 2023. "Experimental and numerical investigation of a hybrid solar thermal-electric powered cooking oven," Energy, Elsevier, vol. 280(C).
    19. Subramanyam, Veena & Kumar, Amit & Talaei, Alireza & Mondal, Md. Alam Hossain, 2017. "Energy efficiency improvement opportunities and associated greenhouse gas abatement costs for the residential sector," Energy, Elsevier, vol. 118(C), pages 795-807.
    20. Nadia S. Ouedraogo, 2017. "Energy futures modelling for African countries: LEAP model application," WIDER Working Paper Series 056, World Institute for Development Economic Research (UNU-WIDER).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16964-:d:1006995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.