IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v314y2025ics0360544224039720.html
   My bibliography  Save this article

Enabling sustainable energy access in decentralized sectors and communities: A proposal for opto-thermal analysis for rating community solar cookers

Author

Listed:
  • Aldali, Yasser
  • Belgasim, Basim
  • Sagade, Atul A.
  • BinNasir, Mohammed A.
  • Alhossdy, Hamad
  • Abdelhadi, Mahmood

Abstract

Community solar cookers (CSCs) hold significant promise for addressing energy poverty and promoting sustainable development. However, existing methods for evaluating CSCs performance are primarily reported in low-temperature applications. This study addresses this gap by proposing a Cooker Opto-Thermal Ratio (COR) based performance evaluation approach for CSCs operating at intermediate temperatures (120–300 °C) for the first time. The big parabolic dish concentrating solar collector (3.801 m2 aperture area) acts as a CSC, which holds a cooking load (test fluid) of ∼13 kg in a cooking pot.

Suggested Citation

  • Aldali, Yasser & Belgasim, Basim & Sagade, Atul A. & BinNasir, Mohammed A. & Alhossdy, Hamad & Abdelhadi, Mahmood, 2025. "Enabling sustainable energy access in decentralized sectors and communities: A proposal for opto-thermal analysis for rating community solar cookers," Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224039720
    DOI: 10.1016/j.energy.2024.134194
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224039720
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thirunavukkarasu, V. & Cheralathan, M., 2020. "An experimental study on energy and exergy performance of a spiral tube receiver for solar parabolic dish concentrator," Energy, Elsevier, vol. 192(C).
    2. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional and community solar cooking in India using SK-23 and Scheffler solar cookers: A financial appraisal," Renewable Energy, Elsevier, vol. 120(C), pages 501-511.
    3. Lahkar, Pranab J. & Bhamu, Rajesh K. & Samdarshi, S.K., 2012. "Enabling inter-cooker thermal performance comparison based on cooker opto-thermal ratio (COR)," Applied Energy, Elsevier, vol. 99(C), pages 491-495.
    4. Sagade, Atul A. & Samdarshi, S.K. & Lahkar, P.J. & Sagade, Narayani A., 2020. "Experimental determination of the thermal performance of a solar box cooker with a modified cooking pot," Renewable Energy, Elsevier, vol. 150(C), pages 1001-1009.
    5. Sunil Indora & Tara C. Kandpal, 2020. "Solar energy for institutional cooking in India: prospects and potential," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7153-7175, December.
    6. Sharma, Atul & Chen, C.R. & Murty, V.V.S. & Shukla, Anant, 2009. "Solar cooker with latent heat storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1599-1605, August.
    7. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    8. Kumar, Naveen & Vishwanath, G. & Gupta, Anurag, 2012. "An exergy based unified test protocol for solar cookers of different geometries," Renewable Energy, Elsevier, vol. 44(C), pages 457-462.
    9. Muthusivagami, R.M. & Velraj, R. & Sethumadhavan, R., 2010. "Solar cookers with and without thermal storage--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 691-701, February.
    10. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    11. Nkhonjera, Lameck & Bello-Ochende, Tunde & John, Geoffrey & King’ondu, Cecil K., 2017. "A review of thermal energy storage designs, heat storage materials and cooking performance of solar cookers with heat storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 157-167.
    12. Wang, Hai & Huang, Jin & Song, Mengjie & Yan, Jian, 2019. "Effects of receiver parameters on the optical performance of a fixed-focus Fresnel lens solar concentrator/cavity receiver system in solar cooker," Applied Energy, Elsevier, vol. 237(C), pages 70-82.
    13. Manuel J. Blanco & Victor Grigoriev & Kypros Milidonis & George Tsouloupas & Miguel Larrañeta & Manuel Silva, 2021. "Minimizing the Computational Effort to Optimize Solar Concentrators with the Open-Source Tools SunPATH and Tonatiuh++," Energies, MDPI, vol. 14(15), pages 1-20, July.
    14. Herez, Amal & Ramadan, Mohamad & Khaled, Mahmoud, 2018. "Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 421-432.
    15. Belgasim, Basim & Aldali, Yasser & Abdunnabi, Mohammad J.R. & Hashem, Gamal & Hossin, Khaled, 2018. "The potential of concentrating solar power (CSP) for electricity generation in Libya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1-15.
    16. Hai Wang, 2023. "Comparative Study of a Fixed-Focus Fresnel Lens Solar Concentrator/Conical Cavity Receiver System with and without Glass Cover Installed in a Solar Cooker," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    17. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Tawfik, M.A. & Sagade, Atul A. & El-Sebaii, A.A. & Khallaf, A.M. & El-Shal, Hanan M. & Abd Allah, W.E., 2024. "Enabling sustainability in the decentralized energy sector through a solar cooker augmented with a bottom parabolic reflector: Performance modelling and 4E analyses," Energy, Elsevier, vol. 287(C).
    19. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2012. "State of the art of solar cooking: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3776-3785.
    20. Kumar, Anil & Prakash, Om & Kaviti, Ajay Kumar, 2017. "A comprehensive review of Scheffler solar collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 890-898.
    21. Sardarabadi, Mohammad & Passandideh-Fard, Mohammad & Zeinali Heris, Saeed, 2014. "Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units)," Energy, Elsevier, vol. 66(C), pages 264-272.
    22. Lecuona, Antonio & Nogueira, José-Ignacio & Ventas, Rubén & Rodríguez-Hidalgo, María-del-Carmen & Legrand, Mathieu, 2013. "Solar cooker of the portable parabolic type incorporating heat storage based on PCM," Applied Energy, Elsevier, vol. 111(C), pages 1136-1146.
    23. Lahkar, Pranab J. & Samdarshi, S.K., 2010. "A review of the thermal performance parameters of box type solar cookers and identification of their correlations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1615-1621, August.
    24. Valmiki, M.M. & Li, Peiwen & Heyer, Javier & Morgan, Matthew & Albinali, Abdulla & Alhamidi, Kamal & Wagoner, Jeremy, 2011. "A novel application of a Fresnel lens for a solar stove and solar heating," Renewable Energy, Elsevier, vol. 36(5), pages 1614-1620.
    25. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    26. Indora, Sunil & Kandpal, Tara C., 2019. "Financial appraisal of using Scheffler dish for steam based institutional solar cooking in India," Renewable Energy, Elsevier, vol. 135(C), pages 1400-1411.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    3. Kashyap, S. Rahul & Pramanik, Santanu & Ravikrishna, R.V., 2023. "A review of solar, electric and hybrid cookstoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    5. Herez, Amal & Ramadan, Mohamad & Khaled, Mahmoud, 2018. "Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 421-432.
    6. Mulako D. Mukelabai & K. G. U. Wijayantha & Richard E. Blanchard, 2022. "Hydrogen for Cooking: A Review of Cooking Technologies, Renewable Hydrogen Systems and Techno-Economics," Sustainability, MDPI, vol. 14(24), pages 1-30, December.
    7. Mahavar, S. & Sengar, N. & Dashora, P., 2017. "Analytical model for electric back-up power estimation of solar box type cookers," Energy, Elsevier, vol. 134(C), pages 871-881.
    8. Nkhonjera, Lameck & Bello-Ochende, Tunde & John, Geoffrey & King’ondu, Cecil K., 2017. "A review of thermal energy storage designs, heat storage materials and cooking performance of solar cookers with heat storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 157-167.
    9. Selvaraj Balachandran & Jose Swaminathan, 2022. "Advances in Indoor Cooking Using Solar Energy with Phase Change Material Storage Systems," Energies, MDPI, vol. 15(22), pages 1-32, November.
    10. Aquilanti, Alessia & Tomassetti, Sebastiano & Muccioli, Matteo & Di Nicola, Giovanni, 2023. "Design and experimental characterization of a solar cooker with a prismatic cooking chamber and adjustable panel reflectors," Renewable Energy, Elsevier, vol. 202(C), pages 405-418.
    11. Maarten Vanierschot & Ashmore Mawire, 2023. "Heat-Transfer Mechanisms in a Solar Cooking Pot with Thermal Energy Storage," Energies, MDPI, vol. 16(7), pages 1-12, March.
    12. Wang, Hai & Huang, Jin & Song, Mengjie & Yan, Jian, 2019. "Effects of receiver parameters on the optical performance of a fixed-focus Fresnel lens solar concentrator/cavity receiver system in solar cooker," Applied Energy, Elsevier, vol. 237(C), pages 70-82.
    13. Tawfik, M.A. & Sagade, Atul A. & El-Sebaii, A.A. & Khallaf, A.M. & El-Shal, Hanan M. & Abd Allah, W.E., 2024. "Enabling sustainability in the decentralized energy sector through a solar cooker augmented with a bottom parabolic reflector: Performance modelling and 4E analyses," Energy, Elsevier, vol. 287(C).
    14. Liyew, Kassa W. & Habtu, Nigus G. & Louvet, Yoann & Guta, Dawit D. & Jordan, Ulrike, 2021. "Technical design, costs, and greenhouse gas emissions of solar Injera baking stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    15. Apaolaza-Pagoaga, Xabier & Carrillo-Andrés, Antonio & Ruivo, Celestino Rodrigues, 2021. "New approach for analysing the effect of minor and major solar cooker design changes: Influence of height trivet on the power of a funnel cooker," Renewable Energy, Elsevier, vol. 179(C), pages 2071-2085.
    16. Navendu Misra & Abhishek Anand & Saurabh Pandey & Karunesh Kant & Amritanshu Shukla & Atul Sharma, 2023. "Box-Type Solar Cookers: An Overview of Technological Advancement, Energy, Environmental, and Economic Benefits," Energies, MDPI, vol. 16(4), pages 1-32, February.
    17. Koshti, Bhupendra & Dev, Rahul & Bharti, Ajaya & Narayan, Audhesh, 2023. "Comparative performance evaluation of modified solar cookers for subtropical climate conditions," Renewable Energy, Elsevier, vol. 209(C), pages 505-515.
    18. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    19. Mehmet Akif Ceviz & Burak Muratçobanoğlu & Emre Mandev & Faraz Afshari, 2024. "A comprehensive review of solar cooking systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(2), March.
    20. Sunil Indora & Tara C. Kandpal, 2020. "Solar energy for institutional cooking in India: prospects and potential," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7153-7175, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224039720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.