IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11364-d911645.html
   My bibliography  Save this article

Can Fujian Achieve Carbon Peak and Pollutant Reduction Targets before 2030? Case Study of 3E System in Southeastern China Based on System Dynamics

Author

Listed:
  • Lei Zhao

    (College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
    Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China)

  • Wenbin Pan

    (College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China)

  • Hao Lin

    (Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China
    Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

Abstract

Fujian Province has entered the golden period of industrialization and rapid economic development, and its economy and society are undergoing significant changes. An unreasonable industrial structure and rapid growth of energy consumption will result in a high pressure of carbon peak and environmental pollution in Fujian Province in 2030. How to improve energy efficiency, control environmental pollution, and achieve a carbon peak by 2030 while ensuring economic growth has become the focus of the attention of researchers and relevant policymakers. A disadvantage of the current 3E (Economy–Energy–Environment) system is that it has no quantitative basis for the selection of variables and no combined analysis of carbon emissions and environmental pollution, which is not conducive to paying attention to environmental pollution in the process of achieving carbon peak. Based on the STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) model analysis results of environmental pollution and carbon emissions in Fujian Province, this paper established the 3E system model of Fujian Province to simulate three development scenarios and explored the EKC (Environmental Kuznets Curve). The results of the STIRPAT model showed that population, economic structure, and energy structure were the main influencing factors of environmental pollution and carbon emissions in Fujian Province. The 3E system simulation results showed that the current development scenario (scenario one) in Fujian Province is not sustainable, and the carbon peak and pollutant reduction cannot be achieved in 2030. A more stringent development scenario (scenario three) was required to achieve carbon peak and pollutant reduction on schedule. The trend of the carbon emission EKC curve in Fujian Province was different from that of environmental pollution. The carbon emission EKC curve of Fujian Province was a common inverted “U” shape, while the environmental pollution EKC curve had three shapes of “N”, “M,” and inverted “U”. This study can provide a quantitative method for selecting 3E system variables and a new method for establishing the 3E model, and provide a quantitative reference for Fujian Province to develop subsequent policies to control carbon emissions and environmental pollution.

Suggested Citation

  • Lei Zhao & Wenbin Pan & Hao Lin, 2022. "Can Fujian Achieve Carbon Peak and Pollutant Reduction Targets before 2030? Case Study of 3E System in Southeastern China Based on System Dynamics," Sustainability, MDPI, vol. 14(18), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11364-:d:911645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11364/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11364/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, Xinye & Wei, Chu & Qin, Ping & Guo, Jin & Yu, Yihua & Song, Feng & Chen, Zhanming, 2014. "Characteristics of residential energy consumption in China: Findings from a household survey," Energy Policy, Elsevier, vol. 75(C), pages 126-135.
    2. Siti Hanani Isa & Mohd Noor Afiq Ramlee & Muhamad Safiih Lola & Mhd Ikhwanuddin & Mohamad N Azra & Mohd Tajuddin Abdullah & Syerrina Zakaria & Yahaya Ibrahim, 2021. "A system dynamics model for analysing the eco-aquaculture system of integrated aquaculture park in Malaysia with policy recommendations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 511-533, January.
    3. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    4. Wang, Mingwei & Che, Yue & Yang, Kai & Wang, Min & Xiong, Lijun & Huang, Yuchi, 2011. "A local-scale low-carbon plan based on the STIRPAT model and the scenario method: The case of Minhang District, Shanghai, China," Energy Policy, Elsevier, vol. 39(11), pages 6981-6990.
    5. Watabe, Akihiro & Leaver, Jonathan & Ishida, Hiroyuki & Shafiei, Ehsan, 2019. "Impact of low emissions vehicles on reducing greenhouse gas emissions in Japan," Energy Policy, Elsevier, vol. 130(C), pages 227-242.
    6. Wang, Yuan & Zhang, Chen & Lu, Aitong & Li, Li & He, Yanmin & ToJo, Junji & Zhu, Xiaodong, 2017. "A disaggregated analysis of the environmental Kuznets curve for industrial CO2 emissions in China," Applied Energy, Elsevier, vol. 190(C), pages 172-180.
    7. Azevedo, Vitor G. & Sartori, Simone & Campos, Lucila M.S., 2018. "CO2 emissions: A quantitative analysis among the BRICS nations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 107-115.
    8. Benvenutti, Lívia M. & Uriona-Maldonado, Mauricio & Campos, Lucila M.S., 2019. "The impact of CO2 mitigation policies on light vehicle fleet in Brazil," Energy Policy, Elsevier, vol. 126(C), pages 370-379.
    9. Yang, Jing & Strokal, Maryna & Kroeze, Carolien & Wang, Mengru & Wang, Jingfei & Wu, Yihong & Bai, Zhaohai & Ma, Lin, 2019. "Nutrient losses to surface waters in Hai He basin: A case study of Guanting reservoir and Baiyangdian lake," Agricultural Water Management, Elsevier, vol. 213(C), pages 62-75.
    10. Yi Zuo & Ying-ling Shi & Yu-zhuo Zhang, 2017. "Research on the Sustainable Development of an Economic-Energy-Environment (3E) System Based on System Dynamics (SD): A Case Study of the Beijing-Tianjin-Hebei Region in China," Sustainability, MDPI, vol. 9(10), pages 1-23, September.
    11. Moutinho, Victor & Moreira, António Carrizo & Silva, Pedro Miguel, 2015. "The driving forces of change in energy-related CO2 emissions in Eastern, Western, Northern and Southern Europe: The LMDI approach to decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1485-1499.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui Li & Yanan Zheng & Guan Gong & Hongtao Guo, 2023. "A Simulation Study on Peak Carbon Emission of Public Buildings—In the Case of Henan Province, China," Sustainability, MDPI, vol. 15(11), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yang & Zhang, Congrui & Xu, Xiaochuan & Ge, Yongxiang & Ren, Gaofeng, 2022. "Assessment of energy conservation potential and cost in open-pit metal mines: Bottom-up approach integrated energy conservation supply curve and ultimate pit limit," Energy Policy, Elsevier, vol. 163(C).
    2. Jiancheng Qin & Hui Tao & Minjin Zhan & Qamar Munir & Karthikeyan Brindha & Guijin Mu, 2019. "Scenario Analysis of Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    3. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    4. Li Wang & Jie Pei & Jing Geng & Zheng Niu, 2019. "Tracking the Spatial–Temporal Evolution of Carbon Emissions in China from 1999 to 2015: A Land Use Perspective," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    5. Yang Liu & Congrui Zhang & Yingying Huang & Zhixiong Xiao & Yaxuan Han & Gaofeng Ren, 2021. "Climate Impact of China’s Promotion of the Filling Mining Method: Bottom-Up Estimation of Greenhouse Gas Emissions in Underground Metal Mines," Energies, MDPI, vol. 14(11), pages 1-17, June.
    6. Pengyan Zhang & Jianjian He & Xin Hong & Wei Zhang & Chengzhe Qin & Bo Pang & Yanyan Li & Yu Liu, 2017. "Regional-Level Carbon Emissions Modelling and Scenario Analysis: A STIRPAT Case Study in Henan Province, China," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    7. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    8. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    9. Man, Yi & Yan, Yukun & Wang, Xu & Ren, Jingzheng & Xiong, Qingang & He, Zhenglei, 2023. "Overestimated carbon emission of the pulp and paper industry in China," Energy, Elsevier, vol. 273(C).
    10. Garfield Wayne Hunter & Gideon Sagoe & Daniele Vettorato & Ding Jiayu, 2019. "Sustainability of Low Carbon City Initiatives in China: A Comprehensive Literature Review," Sustainability, MDPI, vol. 11(16), pages 1-37, August.
    11. Zhang, Haoran & Li, Ruixiong & Cai, Xingrui & Zheng, Chaoyue & Liu, Laibao & Liu, Maodian & Zhang, Qianru & Lin, Huiming & Chen, Long & Wang, Xuejun, 2022. "Do electricity flows hamper regional economic–environmental equity?," Applied Energy, Elsevier, vol. 326(C).
    12. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    13. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    14. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    15. Hui Fang & Chunyu Jiang & Tufail Hussain & Xiaoye Zhang & Qixin Huo, 2022. "Input Digitization of the Manufacturing Industry and Carbon Emission Intensity Based on Testing the World and Developing Countries," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    16. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    17. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.
    18. Li, Li & Shan, Yuli & Lei, Yalin & Wu, Sanmang & Yu, Xiang & Lin, Xiyan & Chen, Yupei, 2019. "Decoupling of economic growth and emissions in China’s cities: A case study of the Central Plains urban agglomeration," Applied Energy, Elsevier, vol. 244(C), pages 36-45.
    19. Junbo Wang & Liu Chen & Lu Chen & Xiaohui Zhao & Minxi Wang & Yiyi Ju & Li Xin, 2019. "City-Level Features of Energy Footprints and Carbon Dioxide Emissions in Sichuan Province of China," Energies, MDPI, vol. 12(10), pages 1-14, May.
    20. Chunli Zhou & Yuze Tang & Deyan Zhu & Zhiwei Cui, 2024. "Tracking the Carbon Emissions Using Electricity Big Data: A Case Study of the Metal Smelting Industry," Energies, MDPI, vol. 17(3), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11364-:d:911645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.