IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4178-d532829.html
   My bibliography  Save this article

Industry Leaders’ Perceptions of Residential Wood Pellet Technology Diffusion in the Northeastern U.S

Author

Listed:
  • Casey Olechnowicz

    (School of Forest Resources, University of Maine, Orono, ME 04469, USA)

  • Jessica Leahy

    (School of Forest Resources, University of Maine, Orono, ME 04469, USA)

  • Tian Guo

    (W.K. Kellogg Biological Station, Department of Sociology, Michigan State University, East Lansing, MI 48808, USA)

  • Emily Silver Huff

    (Department of Forestry, Michigan State University, East Lansing, MI 48808, USA)

  • Cecilia Danks

    (Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT 08016, USA)

  • Maura Adams

    (Northern Forest Center, Concord, NH 03301, USA)

Abstract

Within a shifting climate of renewable energy options, technology innovations in the energy sector are vital in combating fossil-fuel-driven climate change and economic growth. To enter this market dominated by fossil fuels, renewable energy innovations need to overcome significant barriers related to cost, relative advantages compared to fossil fuels, and policy incentive programs. A better understanding of the innovation diffusion of new technologies in establishing the renewable energy industry can aid policy makers in designing and implementing other renewable energy support programs and improving adoption rates within existing programs. This study assessed industry leaders’ perceptions through semi-structured interviews. We explored the innovation diffusion process of wood pellet residential heating technology, as well as policy needs and barriers within this industry that are hindering successful long-term diffusion and sustainability. We show that while there is high potential to the wood pellet industry in terms of local resources and overall advantages to fossil fuels, it can be difficult to achieve sustainable economic growth with current cost barriers and further policy programs and incentives are needed in addition to improved communication to reduce adoption barriers for wood pellet technology.

Suggested Citation

  • Casey Olechnowicz & Jessica Leahy & Tian Guo & Emily Silver Huff & Cecilia Danks & Maura Adams, 2021. "Industry Leaders’ Perceptions of Residential Wood Pellet Technology Diffusion in the Northeastern U.S," Sustainability, MDPI, vol. 13(8), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4178-:d:532829
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4178/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4178/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Negro, Simona O. & Alkemade, Floortje & Hekkert, Marko P., 2012. "Why does renewable energy diffuse so slowly? A review of innovation system problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3836-3846.
    2. Jacobsson, Staffan & Lauber, Volkmar, 2006. "The politics and policy of energy system transformation--explaining the German diffusion of renewable energy technology," Energy Policy, Elsevier, vol. 34(3), pages 256-276, February.
    3. Gosens, Jorrit & Hedenus, Fredrik & Sandén, Björn A., 2017. "Faster market growth of wind and PV in late adopters due to global experience build-up," Energy, Elsevier, vol. 131(C), pages 267-278.
    4. Naylor, Rosamond L. & Higgins, Matthew M., 2017. "The political economy of biodiesel in an era of low oil prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 695-705.
    5. Buttoud, Gerard & Kouplevatskaya-Buttoud, Irina & Slee, Bill & Weiss, Gerhard, 2011. "Barriers to institutional learning and innovations in the forest sector in Europe: Markets, policies and stakeholders," Forest Policy and Economics, Elsevier, vol. 13(2), pages 124-131.
    6. Strupeit, Lars, 2017. "An innovation system perspective on the drivers of soft cost reduction for photovoltaic deployment: The case of Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 273-286.
    7. Peter Erickson & Adrian Down & Michael Lazarus & Doug Koplow, 2017. "Effect of subsidies to fossil fuel companies on United States crude oil production," Nature Energy, Nature, vol. 2(11), pages 891-898, November.
    8. Eppstein, Margaret J. & Grover, David K. & Marshall, Jeffrey S. & Rizzo, Donna M., 2011. "An agent-based model to study market penetration of plug-in hybrid electric vehicles," Energy Policy, Elsevier, vol. 39(6), pages 3789-3802, June.
    9. Geir Skjevrak & Bertha Maya Sopha, 2012. "Wood-Pellet Heating in Norway: Early Adopters’ Satisfaction and Problems That Have Been Experienced," Sustainability, MDPI, vol. 4(6), pages 1-15, May.
    10. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    11. Noreen Beg & Jan Corfee Morlot & Ogunlade Davidson & Yaw Afrane-Okesse & Lwazikazi Tyani & Fatma Denton & Youba Sokona & Jean Philippe Thomas & Emilio L�bre La Rovere & Jyoti K. Parikh & Kirit Parikh , 2002. "Linkages between climate change and sustainable development," Climate Policy, Taylor & Francis Journals, vol. 2(2-3), pages 129-144, September.
    12. John Hauser & Gerard J. Tellis & Abbie Griffin, 2006. "Research on Innovation: A Review and Agenda for," Marketing Science, INFORMS, vol. 25(6), pages 687-717, 11-12.
    13. Silva, Bruno Kanieski & Cubbage, Frederick W. & Gonzalez, Ronalds & Abt, Robert C., 2019. "Assessing market power in the U.S. pulp and paper industry," Forest Policy and Economics, Elsevier, vol. 102(C), pages 138-150.
    14. Ostlund, Lyman E, 1974. "Perceived Innovation Attributes as Predictors of Innovativeness," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 1(2), pages 23-29, Se.
    15. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    16. Proskurina, Svetlana & Alakangas, Eija & Heinimö, Jussi & Mikkilä, Mirja & Vakkilainen, Esa, 2017. "A survey analysis of the wood pellet industry in Finland: Future perspectives," Energy, Elsevier, vol. 118(C), pages 692-704.
    17. Mercer, Nicholas & Sabau, Gabriela & Klinke, Andreas, 2017. "“Wind energy is not an issue for government”: Barriers to wind energy development in Newfoundland and Labrador, Canada," Energy Policy, Elsevier, vol. 108(C), pages 673-683.
    18. Barrie, Jack & Cruickshank, Heather J., 2017. "Shedding light on the last mile: A study on the diffusion of Pay As You Go Solar Home Systems in Central East Africa," Energy Policy, Elsevier, vol. 107(C), pages 425-436.
    19. Reddy, Sudhakar & Painuly, J.P, 2004. "Diffusion of renewable energy technologies—barriers and stakeholders’ perspectives," Renewable Energy, Elsevier, vol. 29(9), pages 1431-1447.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, Towhidul, 2014. "Household level innovation diffusion model of photo-voltaic (PV) solar cells from stated preference data," Energy Policy, Elsevier, vol. 65(C), pages 340-350.
    2. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    3. Toka, Agorasti & Iakovou, Eleftherios & Vlachos, Dimitrios & Tsolakis, Naoum & Grigoriadou, Anastasia-Loukia, 2014. "Managing the diffusion of biomass in the residential energy sector: An illustrative real-world case study," Applied Energy, Elsevier, vol. 129(C), pages 56-69.
    4. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    5. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    6. Hidayatno, Akhmad & Jafino, Bramka Arga & Setiawan, Andri D. & Purwanto, Widodo Wahyu, 2020. "When and why does transition fail? A model-based identification of adoption barriers and policy vulnerabilities for transition to natural gas vehicles," Energy Policy, Elsevier, vol. 138(C).
    7. Emanuele Giovannetti & Mohsen Hamoudia, 2022. "The interaction between direct and indirect network externalities in the early diffusion of mobile social networking," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 12(4), pages 617-642, December.
    8. Avri Eitan & Gillad Rosen & Lior Herman & Itay Fishhendler, 2020. "Renewable Energy Entrepreneurs: A Conceptual Framework," Energies, MDPI, vol. 13(10), pages 1-23, May.
    9. Rao, K. Usha & Kishore, V.V.N., 2010. "A review of technology diffusion models with special reference to renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1070-1078, April.
    10. Guseo, Renato & Guidolin, Mariangela, 2015. "Heterogeneity in diffusion of innovations modelling: A few fundamental types," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 514-524.
    11. Saurabh Panwar & P. K. Kapur & Ompal Singh, 2019. "Modeling Technological Substitution by Incorporating Dynamic Adoption Rate," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 1-24, February.
    12. Byrka, Katarzyna & Jȩdrzejewski, Arkadiusz & Sznajd-Weron, Katarzyna & Weron, Rafał, 2016. "Difficulty is critical: The importance of social factors in modeling diffusion of green products and practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 723-735.
    13. Steffen S. Bettin, 2020. "Electricity infrastructure and innovation in the next phase of energy transition—amendments to the technology innovation system framework," Review of Evolutionary Political Economy, Springer, vol. 1(3), pages 371-395, November.
    14. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Guidolin, Mariangela & Guseo, Renato, 2016. "The German energy transition: Modeling competition and substitution between nuclear power and Renewable Energy Technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1498-1504.
    16. Heike I. Brugger & Adam Douglas Henry, 2019. "Equity of Incentives: Agent-Based Explorations of How Social Networks Influence the Efficacy of Programs to Promote Solar Adoption," Complexity, Hindawi, vol. 2019, pages 1-15, February.
    17. Shi, Xiaohui & Li, Feng & Bigdeli, Ali Ziaee, 2016. "An examination of NPD models in the context of business models," Journal of Business Research, Elsevier, vol. 69(7), pages 2541-2550.
    18. Ehlers, Melf-Hinrich & Sutherland, Lee-Ann, 2016. "Patterns of attention to renewable energy in the British farming press from 1980 to 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 959-973.
    19. Kobos, Peter H. & Malczynski, Leonard A. & Walker, La Tonya N. & Borns, David J. & Klise, Geoffrey T., 2018. "Timing is everything: A technology transition framework for regulatory and market readiness levels," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 211-225.
    20. Renato Guseo & Mariangela Guidolin, 2008. "Cellular automata and Riccati equation models for diffusion of innovations," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(3), pages 291-308, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4178-:d:532829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.