IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i7p3707-d524716.html
   My bibliography  Save this article

Precision Agriculture Digital Technologies for Sustainable Fungal Disease Management of Ornamental Plants

Author

Listed:
  • Silvia Traversari

    (CREA, Research Centre for Vegetable and Ornamental Crops, Via dei Fiori 8, 51012 Pescia, Italy)

  • Sonia Cacini

    (CREA, Research Centre for Vegetable and Ornamental Crops, Via dei Fiori 8, 51012 Pescia, Italy)

  • Angelica Galieni

    (CREA, Research Centre for Vegetable and Ornamental Crops, Via Salaria 1, 63077 Monsampolo del Tronto, Italy)

  • Beatrice Nesi

    (CREA, Research Centre for Vegetable and Ornamental Crops, Via dei Fiori 8, 51012 Pescia, Italy)

  • Nicola Nicastro

    (CREA, Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy)

  • Catello Pane

    (CREA, Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy)

Abstract

Ornamental plant production constitutes an important sector of the horticultural industry worldwide and fungal infections, that dramatically affect the aesthetic quality of plants, can cause serious economic and crop losses. The need to reduce the use of pesticides for controlling fungal outbreaks requires the development of new sustainable strategies for pathogen control. In particular, early and accurate large-scale detection of occurring symptoms is critical to face the ambitious challenge of an effective, energy-saving, and precise disease management. Here, the new trends in digital-based detection and available tools to treat fungal infections are presented in comparison with conventional practices. Recent advances in molecular biology tools, spectroscopic and imaging technologies and fungal risk models based on microclimate trends are examined. The revised spectroscopic and imaging technologies were tested through a case study on rose plants showing important fungal diseases (i.e., spot spectroscopy, hyperspectral, multispectral, and thermal imaging, fluorescence sensors). The final aim was the examination of conventional practices and current e-tools to gain the early detection of plant diseases, the identification of timing and spacing for their proper management, reduction in crop losses through environmentally friendly and sustainable production systems. Moreover, future perspectives for enhancing the integration of all these approaches are discussed.

Suggested Citation

  • Silvia Traversari & Sonia Cacini & Angelica Galieni & Beatrice Nesi & Nicola Nicastro & Catello Pane, 2021. "Precision Agriculture Digital Technologies for Sustainable Fungal Disease Management of Ornamental Plants," Sustainability, MDPI, vol. 13(7), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3707-:d:524716
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/7/3707/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/7/3707/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Incrocci, Luca & Marzialetti, Paolo & Incrocci, Giorgio & Di Vita, Andrea & Balendonck, Jos & Bibbiani, Carlo & Spagnol, Serafino & Pardossi, Alberto, 2019. "Sensor-based management of container nursery crops irrigated with fresh or saline water," Agricultural Water Management, Elsevier, vol. 213(C), pages 49-61.
    2. Harwood, Thomas D. & Xu, Xiangming & Pautasso, Marco & Jeger, Mike J. & Shaw, Michael W., 2009. "Epidemiological risk assessment using linked network and grid based modelling: Phytophthora ramorum and Phytophthora kernoviae in the UK," Ecological Modelling, Elsevier, vol. 220(23), pages 3353-3361.
    3. Jeger, M.J. & Xu, X.-M., 2015. "Modelling the dynamics of a plant pathogen and a biological control agent in relation to flowering pattern and populations present on leaves," Ecological Modelling, Elsevier, vol. 313(C), pages 13-28.
    4. Caubel, J. & Launay, M. & Lannou, C. & Brisson, N., 2012. "Generic response functions to simulate climate-based processes in models for the development of airborne fungal crop pathogens," Ecological Modelling, Elsevier, vol. 242(C), pages 92-104.
    5. Milan Panth & Samuel C. Hassler & Fulya Baysal-Gurel, 2020. "Methods for Management of Soilborne Diseases in Crop Production," Agriculture, MDPI, vol. 10(1), pages 1-21, January.
    6. Ben Ali, Rim & Bouadila, Salwa & Mami, Abdelkader, 2020. "Experimental validation of the dynamic thermal behavior of two types of agricultural greenhouses in the Mediterranean context," Renewable Energy, Elsevier, vol. 147(P1), pages 118-129.
    7. El Jarroudi, Mustapha & Karjoun, Hasan & Kouadio, Louis & El Jarroudi, Moussa, 2020. "Mathematical modelling of non-local spore dispersion of wind-borne pathogens causing fungal diseases," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    8. Cardoso, B.F. & Rasetti, M. & Giampietri,E. & Finco, A. & Shikida, P.F.A., 2017. "Trade Dynamics in the Italian Floriculture Sector within EU Borders: A Gravity Model Analysis," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 9(2), June.
    9. Nirit Havardi-Burger & Heike Mempel & Vera Bitsch, 2020. "Sustainability Challenges and Innovations in the Value Chain of Flowering Potted Plants for the German Market," Sustainability, MDPI, vol. 12(5), pages 1-26, March.
    10. D L Smith & J P Kerns & N R Walker & A F Payne & B Horvath & J C Inguagiato & J E Kaminski & M Tomaso-Peterson & P L Koch, 2018. "Development and validation of a weather-based warning system to advise fungicide applications to control dollar spot on turfgrass," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Landry, C. & Bonnot, F. & Ravigné, V. & Carlier, J. & Rengifo, D. & Vaillant, J. & Abadie, C., 2017. "A foliar disease simulation model to assist the design of new control methods against black leaf streak disease of banana," Ecological Modelling, Elsevier, vol. 359(C), pages 383-397.
    2. Sebastián Bañón & Jesús Ochoa & Daniel Bañón & María Fernanda Ortuño & María Jesús Sánchez-Blanco, 2020. "Assessment of the Combined Effect of Temperature and Salinity on the Outputs of Soil Dielectric Sensors in Coconut Fiber," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    3. Dirtje Marie Derksen & Dagmar Mithöfer, 2022. "Thinking sustainably? Identifying Stakeholders' positions toward corporate sustainability in floriculture with Q methodology," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(4), pages 1762-1787, December.
    4. Ouazzani Chahidi, Laila & Fossa, Marco & Priarone, Antonella & Mechaqrane, Abdellah, 2021. "Energy saving strategies in sustainable greenhouse cultivation in the mediterranean climate – A case study," Applied Energy, Elsevier, vol. 282(PA).
    5. Gorkem Sulu & Ilknur Polat & Hatice Filiz Boyaci & Aytul Yildirim & Emine Gümrükcü, 2022. "Screening and validation of three molecular markers for disease resistance in eggplant," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 58(2), pages 83-92.
    6. Thompson, Robin N. & Cobb, Richard C. & Gilligan, Christopher A. & Cunniffe, Nik J., 2016. "Management of invading pathogens should be informed by epidemiology rather than administrative boundaries," Ecological Modelling, Elsevier, vol. 324(C), pages 28-32.
    7. Kun Wang & Yinli Bi & Jiayu Zhang & Shaopeng Ma, 2022. "AMF Inoculum Enhances Crop Yields of Zea mays L. ‘Chenghai No. 618’ and Glycine max L. ‘Zhonghuang No. 17’ without Disturbing Native Fugal Communities in Coal Mine Dump," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    8. Milan Panth & Anthony Witcher & Fulya Baysal-Gurel, 2021. "Response of Cover Crops to Phytopythium vexans , Phytophthora nicotianae, and Rhizoctonia solani , Major Soilborne Pathogens of Woody Ornamentals," Agriculture, MDPI, vol. 11(8), pages 1-15, August.
    9. Dhuha Sulaiman Salim Al-Daghari & Abdullah Mohammed Al-Sadi & Issa Hashil Al-Mahmooli & Rhonda Janke & Rethinasamy Velazhahan, 2023. "Biological Control Efficacy of Indigenous Antagonistic Bacteria Isolated from the Rhizosphere of Cabbage Grown in Biofumigated Soil against Pythium aphanidermatum Damping-Off of Cucumber," Agriculture, MDPI, vol. 13(3), pages 1-20, March.
    10. David C. Cook & Shuang Liu & Brendan Murphy & W. Mark Lonsdale, 2010. "Adaptive Approaches to Biosecurity Governance," Risk Analysis, John Wiley & Sons, vol. 30(9), pages 1303-1314, September.
    11. Abdi, Damon E. & Owen, James S. & Wilson, P. Christopher & Hinz, Francisca O. & Cregg, Bert & Fernandez, R. Thomas, 2021. "Reducing pesticide transport in surface and subsurface irrigation return flow in specialty crop production," Agricultural Water Management, Elsevier, vol. 256(C).
    12. Anissa Poleatewich & Isobel Michaud & Brian Jackson & Matthew Krause & Liza DeGenring, 2022. "The Effect of Peat Moss Amended with Three Engineered Wood Substrate Components on Suppression of Damping-Off Caused by Rhizoctonia solani," Agriculture, MDPI, vol. 12(12), pages 1-15, December.
    13. Majid Galoie & Fouad Kilanehei & Artemis Motamedi & Mohammad Nazari-Sharabian, 2021. "Converting Daily Rainfall Data to Sub-daily—Introducing the MIMD Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3861-3871, September.
    14. Saedi, Ali & Jahangiri, Ali & Ameri, Mohammad & Asadi, Farzad, 2022. "Feasibility study and 3E analysis of blowdown heat recovery in a combined cycle power plant for utilization in Organic Rankine Cycle and greenhouse heating," Energy, Elsevier, vol. 260(C).
    15. Incrocci, Luca & Thompson, Rodney B. & Fernandez-Fernandez, María Dolores & De Pascale, Stefania & Pardossi, Alberto & Stanghellini, Cecilia & Rouphael, Youssef & Gallardo, Marisa, 2020. "Irrigation management of European greenhouse vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    16. Douma, J.C. & Pautasso, M. & Venette, R.C. & Robinet, C. & Hemerik, L. & Mourits, M.C.M. & Schans, J. & van der Werf, W., 2016. "Pathway models for analysing and managing the introduction of alien plant pests—an overview and categorization," Ecological Modelling, Elsevier, vol. 339(C), pages 58-67.
    17. Costantino, Andrea & Comba, Lorenzo & Sicardi, Giacomo & Bariani, Mauro & Fabrizio, Enrico, 2021. "Energy performance and climate control in mechanically ventilated greenhouses: A dynamic modelling-based assessment and investigation," Applied Energy, Elsevier, vol. 288(C).
    18. Domingo Cesar Carrascal-Hernández & Edwin Flórez-López & Yeimmy Peralta-Ruiz & Clemencia Chaves-López & Carlos David Grande-Tovar, 2022. "Eco-Friendly Biocontrol Strategies of Alternaria Phytopathogen Fungus: A Focus on Gene-Editing Techniques," Agriculture, MDPI, vol. 12(10), pages 1-23, October.
    19. Marius Drechsler & Andreas Holzapfel, 2022. "Decision Support in Horticultural Supply Chains: A Planning Problem Framework for Small and Medium-Sized Enterprises," Agriculture, MDPI, vol. 12(11), pages 1-25, November.
    20. Erhan Erdel & Uğur Şimşek & Tuba Genç Kesimci, 2023. "Effects of Fungi on Soil Organic Carbon and Soil Enzyme Activity under Agricultural and Pasture Land of Eastern Türkiye," Sustainability, MDPI, vol. 15(3), pages 1-12, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3707-:d:524716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.