IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v260y2022ics0360544222019600.html
   My bibliography  Save this article

Feasibility study and 3E analysis of blowdown heat recovery in a combined cycle power plant for utilization in Organic Rankine Cycle and greenhouse heating

Author

Listed:
  • Saedi, Ali
  • Jahangiri, Ali
  • Ameri, Mohammad
  • Asadi, Farzad

Abstract

Greenhouse heating plays a key role in the growth and yield of greenhouse crops in cold regions. Moreover, heat loss and energy wastage are abundant in the industry. Therefore, these two subjects are combined in this study to analyze the feasibility of using the steam vent and waste drain flow of a blowdown tank in a combined cycle power plant (CCPP) to provide the required additional heating in a greenhouse by installing a radiant floor heating (RFH) system. For this purpose, a tunnel greenhouse with an east-west orientation is modeled in steady states. In addition, a CCPP integrated with the Organic Rankine Cycle (ORC) is modeled on the energy, exergy, and economic (3E) analysis to comprehensively evaluate the system. The effect of greenhouse heating was analyzed in three months of the year with highest heating demand. According to the results of analyzing four scenarios, the RFH system managed to increase the greenhouse temperature up to 7.5 °C. The results indicated an increase in energy efficiency and exergy efficiency of the system by 0.04% and 0.05%, respectively. Based on the economic analysis, the payback period in the proposed scenario was determined 4.81 years.

Suggested Citation

  • Saedi, Ali & Jahangiri, Ali & Ameri, Mohammad & Asadi, Farzad, 2022. "Feasibility study and 3E analysis of blowdown heat recovery in a combined cycle power plant for utilization in Organic Rankine Cycle and greenhouse heating," Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222019600
    DOI: 10.1016/j.energy.2022.125065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222019600
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mokhtari, Hamid & Ahmadisedigh, Hossein & Ameri, Mohammad, 2017. "The optimal design and 4E analysis of double pressure HRSG utilizing steam injection for Damavand power plant," Energy, Elsevier, vol. 118(C), pages 399-413.
    2. Li, Changsheng & Wang, Haiyu & Miao, Hong & Ye, Bin, 2017. "The economic and social performance of integrated photovoltaic and agricultural greenhouses systems: Case study in China," Applied Energy, Elsevier, vol. 190(C), pages 204-212.
    3. Gauravkumar Gadhesaria & Chinmay Desai & Ravi Bhatt & Bashir Salah, 2020. "Thermal Analysis and Experimental Validation of Environmental Condition Inside Greenhouse in Tropical Wet and Dry Climate," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    4. Kaushik, S.C. & Reddy, V. Siva & Tyagi, S.K., 2011. "Energy and exergy analyses of thermal power plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1857-1872, May.
    5. Bazgaou, A. & Fatnassi, H. & Bouharroud, R. & Ezzaeri, K. & Gourdo, L. & Wifaya, A. & Demrati, H. & Elame, F. & Carreño-Ortega, Á. & Bekkaoui, A. & Aharoune, A. & Bouirden, L., 2021. "Effect of active solar heating system on microclimate, development, yield and fruit quality in greenhouse tomato production," Renewable Energy, Elsevier, vol. 165(P1), pages 237-250.
    6. Ghasemi Mobtaker, Hassan & Ajabshirchi, Yahya & Ranjbar, Seyed Faramarz & Matloobi, Mansour, 2016. "Solar energy conservation in greenhouse: Thermal analysis and experimental validation," Renewable Energy, Elsevier, vol. 96(PA), pages 509-519.
    7. Hatirli, Selim Adem & Ozkan, Burhan & Fert, Cemal, 2006. "Energy inputs and crop yield relationship in greenhouse tomato production," Renewable Energy, Elsevier, vol. 31(4), pages 427-438.
    8. Amiri Rad, Ehsan & Mohammadi, Saeed & Tayyeban, Edris, 2020. "Simultaneous optimization of working fluid and boiler pressure in an organic Rankine cycle for different heat source temperatures," Energy, Elsevier, vol. 194(C).
    9. Ben Ali, Rim & Bouadila, Salwa & Mami, Abdelkader, 2020. "Experimental validation of the dynamic thermal behavior of two types of agricultural greenhouses in the Mediterranean context," Renewable Energy, Elsevier, vol. 147(P1), pages 118-129.
    10. Yildizhan, Hasan & Taki, Morteza, 2018. "Assessment of tomato production process by cumulative exergy consumption approach in greenhouse and open field conditions: Case study of Turkey," Energy, Elsevier, vol. 156(C), pages 401-408.
    11. Heidari, M.D. & Omid, M., 2011. "Energy use patterns and econometric models of major greenhouse vegetable productions in Iran," Energy, Elsevier, vol. 36(1), pages 220-225.
    12. Xu, Jinliang & Yu, Chao, 2014. "Critical temperature criterion for selection of working fluids for subcritical pressure Organic Rankine cycles," Energy, Elsevier, vol. 74(C), pages 719-733.
    13. Ameri, Mohammad & Mokhtari, Hamid & Mostafavi Sani, Mostafa, 2018. "4E analyses and multi-objective optimization of different fuels application for a large combined cycle power plant," Energy, Elsevier, vol. 156(C), pages 371-386.
    14. Mobtaker, Hassan Ghasemi & Ajabshirchi, Yahya & Ranjbar, Seyed Faramarz & Matloobi, Mansour, 2019. "Simulation of thermal performance of solar greenhouse in north-west of Iran: An experimental validation," Renewable Energy, Elsevier, vol. 135(C), pages 88-97.
    15. Bambara, James & Athienitis, Andreas K., 2019. "Energy and economic analysis for the design of greenhouses with semi-transparent photovoltaic cladding," Renewable Energy, Elsevier, vol. 131(C), pages 1274-1287.
    16. Zhang, Guanshan & Ding, Xiaoming & Li, Tianhua & Pu, Wenyang & Lou, Wei & Hou, Jialin, 2020. "Dynamic energy balance model of a glass greenhouse: An experimental validation and solar energy analysis," Energy, Elsevier, vol. 198(C).
    17. Pahlavan, Reza & Omid, Mahmoud & Akram, Asadollah, 2011. "Energy use efficiency in greenhouse tomato production in Iran," Energy, Elsevier, vol. 36(12), pages 6714-6719.
    18. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    19. Gourdo, L. & Fatnassi, H. & Tiskatine, R. & Wifaya, A. & Demrati, H. & Aharoune, A. & Bouirden, L., 2019. "Solar energy storing rock-bed to heat an agricultural greenhouse," Energy, Elsevier, vol. 169(C), pages 206-212.
    20. Ehyaei, M.A. & Mozafari, A. & Alibiglou, M.H., 2011. "Exergy, economic & environmental (3E) analysis of inlet fogging for gas turbine power plant," Energy, Elsevier, vol. 36(12), pages 6851-6861.
    21. Boyaghchi, Fateme Ahmadi & Molaie, Hanieh, 2015. "Advanced exergy and environmental analyses and multi objective optimization of a real combined cycle power plant with supplementary firing using evolutionary algorithm," Energy, Elsevier, vol. 93(P2), pages 2267-2279.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alshammari, Saif & Kadam, Sambhaji T. & Yu, Zhibin, 2023. "Assessment of single rotor expander-compressor device in combined organic Rankine cycle (ORC) and vapor compression refrigeration cycle (VCR)," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghasemi-Mobtaker, Hassan & Mostashari-Rad, Fatemeh & Saber, Zahra & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2020. "Application of photovoltaic system to modify energy use, environmental damages and cumulative exergy demand of two irrigation systems-A case study: Barley production of Iran," Renewable Energy, Elsevier, vol. 160(C), pages 1316-1334.
    2. Ouammi, Ahmed, 2021. "Model predictive control for optimal energy management of connected cluster of microgrids with net zero energy multi-greenhouses," Energy, Elsevier, vol. 234(C).
    3. Costantino, Andrea & Comba, Lorenzo & Sicardi, Giacomo & Bariani, Mauro & Fabrizio, Enrico, 2021. "Energy performance and climate control in mechanically ventilated greenhouses: A dynamic modelling-based assessment and investigation," Applied Energy, Elsevier, vol. 288(C).
    4. Asgharipour, Mohammad Reza & Mondani, Farzad & Riahinia, Shahram, 2012. "Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province," Energy, Elsevier, vol. 44(1), pages 1078-1084.
    5. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    6. Gauravkumar Gadhesaria & Chinmay Desai & Ravi Bhatt & Bashir Salah, 2020. "Thermal Analysis and Experimental Validation of Environmental Condition Inside Greenhouse in Tropical Wet and Dry Climate," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    7. Wang, Zhen & Duan, Liqiang & Zhang, Zuxian, 2022. "Multi-objective optimization of gas turbine combined cycle system considering environmental damage cost of pollution emissions," Energy, Elsevier, vol. 261(PA).
    8. Zhang, Kai & Yu, Jihua & Ren, Yan, 2022. "Research on the size optimization of photovoltaic panels and integrated application with Chinese solar greenhouses," Renewable Energy, Elsevier, vol. 182(C), pages 536-551.
    9. Pahlavan, Reza & Omid, Mahmoud & Akram, Asadollah, 2011. "Energy use efficiency in greenhouse tomato production in Iran," Energy, Elsevier, vol. 36(12), pages 6714-6719.
    10. Vlontzos, G. & Pardalos, P.M., 2017. "Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 155-162.
    11. Hassanien, Reda Hassanien Emam & Li, Ming & Yin, Fang, 2018. "The integration of semi-transparent photovoltaics on greenhouse roof for energy and plant production," Renewable Energy, Elsevier, vol. 121(C), pages 377-388.
    12. Xiaodan Zhang & Jian Lv & Jianming Xie & Jihua Yu & Jing Zhang & Chaonan Tang & Jing Li & Zhixue He & Cheng Wang, 2020. "Solar Radiation Allocation and Spatial Distribution in Chinese Solar Greenhouses: Model Development and Application," Energies, MDPI, vol. 13(5), pages 1-27, March.
    13. Afzali, Sayyed Faridoddin & Mahalec, Vladimir, 2017. "Optimal design, operation and analytical criteria for determining optimal operating modes of a CCHP with fired HRSG, boiler, electric chiller and absorption chiller," Energy, Elsevier, vol. 139(C), pages 1052-1065.
    14. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    15. Mahdi Deymi-Dashtebayaz & Parisa Kazemiani-Najafabad, 2019. "Energy, Exergy, Economic, and Environmental analysis for various inlet air cooling methods on Shahid Hashemi-Nezhad gas turbines refinery," Energy & Environment, , vol. 30(3), pages 481-498, May.
    16. Zhang, Guanshan & Ding, Xiaoming & Li, Tianhua & Pu, Wenyang & Lou, Wei & Hou, Jialin, 2020. "Dynamic energy balance model of a glass greenhouse: An experimental validation and solar energy analysis," Energy, Elsevier, vol. 198(C).
    17. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    18. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein & Rajaeifar, Mohammad Ali, 2014. "Application of artificial neural networks for prediction of output energy and GHG emissions in potato production in Iran," Agricultural Systems, Elsevier, vol. 123(C), pages 120-127.
    19. Kuswardhani, Nita & Soni, Peeyush & Shivakoti, Ganesh P., 2013. "Comparative energy input–output and financial analyses of greenhouse and open field vegetables production in West Java, Indonesia," Energy, Elsevier, vol. 53(C), pages 83-92.
    20. Rabiatul Munirah Alpandi & Fakarudin Kamarudin & Peter Wanke & Muhammad Syafiq Muhammad Salam & Hafezali Iqbal Hussain, 2022. "Energy Efficiency in Production of Swiftlet Edible Bird’s Nest," Sustainability, MDPI, vol. 14(10), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222019600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.