IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v118y2017icp399-413.html
   My bibliography  Save this article

The optimal design and 4E analysis of double pressure HRSG utilizing steam injection for Damavand power plant

Author

Listed:
  • Mokhtari, Hamid
  • Ahmadisedigh, Hossein
  • Ameri, Mohammad

Abstract

Energy, Exergy, Exergoeconomic and Environmental (4E) analysis of combined cycle power plant utilizing the method of steam injection into the combustion chamber is performed in the current study. Steam is supplied from low pressure (LP) side of the heat recovery steam generator (HRSG). According to genetic algorithm's results, the steam injection elevates the total combined cycle power by 2 MW while lowers the design costs considerably at optimum state. Some parameters restrict the steam injection usage within combined cycles that could be noted as Gas turbine power decline; Gas turbine loss increase due to pressure loss; HRSG's manufacturing costs growth; opposition between high and low pressure flow rate variations; NOX and CO emission costs dependency on optimum conditions. This paper discusses the above limitations for implementation of such technology in combined cycles. At the optimum point, Exergy and thermal efficiencies values increased from 42% and 47.6% to 47.28% and 48.94% respectively. Optimum pinch and approach temperatures for HP and LP sides were computed to be 35, 20, 17 and 37.5, respectively. Also, the optimum value of X parameter is 23.28%; X is defined as the ratio of steam to the inlet air flow rate divided by the other fraction which is the ratio of fuel to input air flow rate while there is no steam injection into the combustion chamber.

Suggested Citation

  • Mokhtari, Hamid & Ahmadisedigh, Hossein & Ameri, Mohammad, 2017. "The optimal design and 4E analysis of double pressure HRSG utilizing steam injection for Damavand power plant," Energy, Elsevier, vol. 118(C), pages 399-413.
  • Handle: RePEc:eee:energy:v:118:y:2017:i:c:p:399-413
    DOI: 10.1016/j.energy.2016.12.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216318709
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.12.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsatsaronis, George & Pisa, Javier, 1994. "Exergoeconomic evaluation and optimization of energy systems — application to the CGAM problem," Energy, Elsevier, vol. 19(3), pages 287-321.
    2. Haglind, F., 2010. "Variable geometry gas turbines for improving the part-load performance of marine combined cycles – Gas turbine performance," Energy, Elsevier, vol. 35(2), pages 562-570.
    3. Nishida, Kousuke & Takagi, Toshimi & Kinoshita, Shinichi, 2005. "Regenerative steam-injection gas-turbine systems," Applied Energy, Elsevier, vol. 81(3), pages 231-246, July.
    4. De Paepe, Ward & Delattin, Frank & Bram, Svend & De Ruyck, Jacques, 2012. "Steam injection experiments in a microturbine – A thermodynamic performance analysis," Applied Energy, Elsevier, vol. 97(C), pages 569-576.
    5. Kanoglu, Mehmet & Dincer, Ibrahim & Rosen, Marc A., 2007. "Understanding energy and exergy efficiencies for improved energy management in power plants," Energy Policy, Elsevier, vol. 35(7), pages 3967-3978, July.
    6. Lee, Jong Jun & Jeon, Mu Sung & Kim, Tong Seop, 2010. "The influence of water and steam injection on the performance of a recuperated cycle microturbine for combined heat and power application," Applied Energy, Elsevier, vol. 87(4), pages 1307-1316, April.
    7. Mokhtari, Hamid & Hadiannasab, Hasti & Mostafavi, Mostafa & Ahmadibeni, Ali & Shahriari, Behrooz, 2016. "Determination of optimum geothermal Rankine cycle parameters utilizing coaxial heat exchanger," Energy, Elsevier, vol. 102(C), pages 260-275.
    8. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nabati, Amir Masoud & sadeghi, Mohamad Sadegh & Naserabad, Sadegh Nikbakht & Mokhtari, Hamid & izadpanah, Sobhan, 2018. "Thermo-economic analysis for determination of optimized connection between solar field and combined cycle power plant," Energy, Elsevier, vol. 162(C), pages 1062-1076.
    2. Saedi, Ali & Jahangiri, Ali & Ameri, Mohammad & Asadi, Farzad, 2022. "Feasibility study and 3E analysis of blowdown heat recovery in a combined cycle power plant for utilization in Organic Rankine Cycle and greenhouse heating," Energy, Elsevier, vol. 260(C).
    3. Amiri Rad, Ehsan & Kazemiani-Najafabadi, Parisa, 2017. "Thermo-environmental and economic analyses of an integrated heat recovery steam-injected gas turbine," Energy, Elsevier, vol. 141(C), pages 1940-1954.
    4. Ertesvåg, Ivar S. & Madejski, Paweł & Ziółkowski, Paweł & Mikielewicz, Dariusz, 2023. "Exergy analysis of a negative CO2 emission gas power plant based on water oxy-combustion of syngas from sewage sludge gasification and CCS," Energy, Elsevier, vol. 278(C).
    5. Nadir, Mahmoud & Ghenaiet, Adel, 2017. "Steam turbine injection generator performance estimation considering turbine blade cooling," Energy, Elsevier, vol. 132(C), pages 248-256.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Zhifeng & Yang, Cheng & Yang, Haixia & Ma, Xiaoqian, 2018. "Off-design heating/power flexibility for steam injected gas turbine based CCHP considering variable geometry operation," Energy, Elsevier, vol. 165(PA), pages 1048-1060.
    2. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Comparative exergoeconomics of power utilities: Air-cooled gas turbine cycle and combined cycle configurations," Energy, Elsevier, vol. 139(C), pages 42-51.
    3. Ahmadi, Pouria & Dincer, Ibrahim, 2010. "Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA)," Energy, Elsevier, vol. 35(12), pages 5161-5172.
    4. Anwar Hamdan Al Assaf & Abdulkarem Amhamed & Odi Fawwaz Alrebei, 2022. "State of the Art in Humidified Gas Turbine Configurations," Energies, MDPI, vol. 15(24), pages 1-32, December.
    5. Mohammadkhani, F. & Shokati, N. & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2014. "Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles," Energy, Elsevier, vol. 65(C), pages 533-543.
    6. Chacartegui, R. & Blanco, M.J. & Muñoz de Escalona, J.M. & Sánchez, D. & Sánchez, T., 2013. "Performance assessment of Molten Carbonate Fuel Cell–Humid Air Turbine hybrid systems," Applied Energy, Elsevier, vol. 102(C), pages 687-699.
    7. Pirmohamadi, Alireza & Ghazi, Mehrangiz & Nikian, Mohammad, 2019. "Optimal design of cogeneration systems in total site using exergy approach," Energy, Elsevier, vol. 166(C), pages 1291-1302.
    8. Athari, Hassan & Soltani, Saeed & Rosen, Marc A. & Gavifekr, Masood Kordoghli & Morosuk, Tatiana, 2016. "Exergoeconomic study of gas turbine steam injection and combined power cycles using fog inlet cooling and biomass fuel," Renewable Energy, Elsevier, vol. 96(PA), pages 715-726.
    9. De Paepe, Ward & Montero Carrero, Marina & Bram, Svend & Contino, Francesco & Parente, Alessandro, 2017. "Waste heat recovery optimization in micro gas turbine applications using advanced humidified gas turbine cycle concepts," Applied Energy, Elsevier, vol. 207(C), pages 218-229.
    10. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2017. "Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery," Applied Energy, Elsevier, vol. 185(P1), pages 506-518.
    11. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Thermoeconomic investigation of power utilities: Intercooled recuperated gas turbine cycle featuring cooled turbine blades," Energy, Elsevier, vol. 138(C), pages 490-499.
    12. Xiong, Jie & Zhao, Haibo & Zhang, Chao & Zheng, Chuguang & Luh, Peter B., 2012. "Thermoeconomic operation optimization of a coal-fired power plant," Energy, Elsevier, vol. 42(1), pages 486-496.
    13. Pashchenko, Dmitry & Mustafin, Ravil & Karpilov, Igor, 2022. "Thermochemical recuperation by steam methane reforming as an efficient alternative to steam injection in the gas turbines," Energy, Elsevier, vol. 258(C).
    14. Selwynraj, A. Immanuel & Iniyan, S. & Polonsky, Guy & Suganthi, L. & Kribus, Abraham, 2015. "Exergy analysis and annual exergetic performance evaluation of solar hybrid STIG (steam injected gas turbine) cycle for Indian conditions," Energy, Elsevier, vol. 80(C), pages 414-427.
    15. Nord, Lars O. & Martelli, Emanuele & Bolland, Olav, 2014. "Weight and power optimization of steam bottoming cycle for offshore oil and gas installations," Energy, Elsevier, vol. 76(C), pages 891-898.
    16. De Paepe, Ward & Delattin, Frank & Bram, Svend & De Ruyck, Jacques, 2013. "Water injection in a micro gas turbine – Assessment of the performance using a black box method," Applied Energy, Elsevier, vol. 112(C), pages 1291-1302.
    17. Kang, Do Won & Jang, Hyuck Jun & Kim, Tong Seop, 2014. "Using compressor discharge air bypass to enhance power generation of a steam-injected gas turbine for combined heat and power," Energy, Elsevier, vol. 76(C), pages 390-399.
    18. Montero Carrero, Marina & De Paepe, Ward & Bram, Svend & Parente, Alessandro & Contino, Francesco, 2017. "Does humidification improve the micro Gas Turbine cycle? Thermodynamic assessment based on Sankey and Grassmann diagrams," Applied Energy, Elsevier, vol. 204(C), pages 1163-1171.
    19. Thomas Guewouo & Lingai Luo & Dominique Tarlet & Mohand Tazerout, 2019. "Identification of Optimal Parameters for a Small-Scale Compressed-Air Energy Storage System Using Real Coded Genetic Algorithm," Energies, MDPI, vol. 12(3), pages 1-32, January.
    20. Kayadelen, Hasan Kayhan & Ust, Yasin, 2017. "Thermodynamic, environmental and economic performance optimization of simple, regenerative, STIG and RSTIG gas turbine cycles," Energy, Elsevier, vol. 121(C), pages 751-771.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:118:y:2017:i:c:p:399-413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.