IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i2p562-570.html
   My bibliography  Save this article

Variable geometry gas turbines for improving the part-load performance of marine combined cycles – Gas turbine performance

Author

Listed:
  • Haglind, F.

Abstract

The part-load performance of gas and steam turbine combined cycles intended for naval use is of great importance, and it is influenced by the gas turbine configuration and load control strategy. This paper is aimed at quantifying the effects of variable geometry on the gas turbine part-load performance. Subsequently, in another paper, the effects of variable geometry on the part-load performance for combined cycles used for ship propulsion will be presented. Moreover, this paper is aimed at developing methodologies and deriving models for part-load simulations suitable for energy system analysis of various components within gas turbines. Two different gas turbine configurations are studied, a two-shaft aero-derivative configuration and a single-shaft industrial configuration. When both gas turbine configurations are running in part-load using fuel flow control, the results indicate better part-load performance for the two-shaft gas turbine. Reducing the load this way is accompanied by a much larger decrease in exhaust gas temperature for the single-shaft gas turbine than for the two-shaft configuration. As used here, the results suggest that variable geometry generally deteriorates the gas turbine part-load performance.

Suggested Citation

  • Haglind, F., 2010. "Variable geometry gas turbines for improving the part-load performance of marine combined cycles – Gas turbine performance," Energy, Elsevier, vol. 35(2), pages 562-570.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:2:p:562-570
    DOI: 10.1016/j.energy.2009.10.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209004605
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.10.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haglind, F. & Elmegaard, B., 2009. "Methodologies for predicting the part-load performance of aero-derivative gas turbines," Energy, Elsevier, vol. 34(10), pages 1484-1492.
    2. Kim, T.S. & Hwang, S.H., 2006. "Part load performance analysis of recuperated gas turbines considering engine configuration and operation strategy," Energy, Elsevier, vol. 31(2), pages 260-277.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mokhtari, Hamid & Ahmadisedigh, Hossein & Ameri, Mohammad, 2017. "The optimal design and 4E analysis of double pressure HRSG utilizing steam injection for Damavand power plant," Energy, Elsevier, vol. 118(C), pages 399-413.
    2. Larsen, Ulrik & Pierobon, Leonardo & Baldi, Francesco & Haglind, Fredrik & Ivarsson, Anders, 2015. "Development of a model for the prediction of the fuel consumption and nitrogen oxides emission trade-off for large ships," Energy, Elsevier, vol. 80(C), pages 545-555.
    3. Nord, Lars O. & Martelli, Emanuele & Bolland, Olav, 2014. "Weight and power optimization of steam bottoming cycle for offshore oil and gas installations," Energy, Elsevier, vol. 76(C), pages 891-898.
    4. Zhang, Guoqiang & Zheng, Jiongzhi & Yang, Yongping & Liu, Wenyi, 2016. "A novel LNG cryogenic energy utilization method for inlet air cooling to improve the performance of combined cycle," Applied Energy, Elsevier, vol. 179(C), pages 638-649.
    5. Hachem, Joe & Schuhler, Thierry & Orhon, Dominique & Cuif-Sjostrand, Marianne & Zoughaib, Assaad & Molière, Michel, 2022. "Exhaust gas recirculation applied to single-shaft gas turbines: An energy and exergy approach," Energy, Elsevier, vol. 238(PB).
    6. Song, Yin & Gu, Chun-wei & Ji, Xing-xing, 2015. "Development and validation of a full-range performance analysis model for a three-spool gas turbine with turbine cooling," Energy, Elsevier, vol. 89(C), pages 545-557.
    7. Park, Yeseul & Choi, Minsung & Kim, Dongmin & Lee, Joongsung & Choi, Gyungmin, 2021. "Performance analysis of large-scale industrial gas turbine considering stable combustor operation using novel blended fuel," Energy, Elsevier, vol. 236(C).
    8. Jiménez-Espadafor Aguilar, Francisco & Quintero, R. Rodríguez & Trujillo, E. Carvajal & García, Miguel Torres, 2014. "Analysis of regulation methods of a combined heat and power plant based on gas turbines," Energy, Elsevier, vol. 72(C), pages 574-589.
    9. Walnum, Harald Taxt & Nekså, Petter & Nord, Lars O. & Andresen, Trond, 2013. "Modelling and simulation of CO2 (carbon dioxide) bottoming cycles for offshore oil and gas installations at design and off-design conditions," Energy, Elsevier, vol. 59(C), pages 513-520.
    10. Yang, Cheng & Huang, Zhifeng & Ma, Xiaoqian, 2018. "Comparative study on off-design characteristics of CHP based on GTCC under alternative operating strategy for gas turbine," Energy, Elsevier, vol. 145(C), pages 823-838.
    11. Motamed, Mohammad Ali & Nord, Lars O., 2022. "Part-load efficiency boost in offshore organic Rankine cycles with a cooling water flow rate control strategy," Energy, Elsevier, vol. 257(C).
    12. Huang, Jingjian & Xu, Yujie & Guo, Huan & Geng, Xiaoqian & Chen, Haisheng, 2022. "Dynamic performance and control scheme of variable-speed compressed air energy storage," Applied Energy, Elsevier, vol. 325(C).
    13. Wang, Zefeng & Han, Wei & Zhang, Na & Liu, Meng & Jin, Hongguang, 2017. "Effect of an alternative operating strategy for gas turbine on a combined cooling heating and power system," Applied Energy, Elsevier, vol. 205(C), pages 163-172.
    14. Cai, Changpeng & Wang, Yong & Fang, Juan & Chen, Haoying & Zheng, Qiangang & Zhang, Haibo, 2023. "Multiple aspects to flight mission performances improvement of commercial turbofan engine via variable geometry adjustment," Energy, Elsevier, vol. 263(PA).
    15. Huang, Zhifeng & Yang, Cheng & Yang, Haixia & Ma, Xiaoqian, 2018. "Off-design heating/power flexibility for steam injected gas turbine based CCHP considering variable geometry operation," Energy, Elsevier, vol. 165(PA), pages 1048-1060.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yucer, Cem Tahsin, 2016. "Thermodynamic analysis of the part load performance for a small scale gas turbine jet engine by using exergy analysis method," Energy, Elsevier, vol. 111(C), pages 251-259.
    2. Mehrpanahi, Abdollah & Payganeh, Gholamhasan & Arbabtafti, Mohammadreza, 2017. "Dynamic modeling of an industrial gas turbine in loading and unloading conditions using a gray box method," Energy, Elsevier, vol. 120(C), pages 1012-1024.
    3. Jiang, Kai & Yan, Xiaohe & Liu, Nian & Wang, Peng, 2022. "Energy trade-offs in coupled ICM and electricity market under dynamic carbon emission intensity," Energy, Elsevier, vol. 260(C).
    4. Leonardo Pierobon & Tuong-Van Nguyen & Andrea Mazzucco & Ulrik Larsen & Fredrik Haglind, 2014. "Part-Load Performance of aWet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator," Energies, MDPI, vol. 7(12), pages 1-23, December.
    5. Satya Gopisetty & Peter Treffinger, 2016. "Generic Combined Heat and Power (CHP) Model for the Concept Phase of Energy Planning Process," Energies, MDPI, vol. 10(1), pages 1-17, December.
    6. Lee, Jong Jun & Jeon, Mu Sung & Kim, Tong Seop, 2010. "The influence of water and steam injection on the performance of a recuperated cycle microturbine for combined heat and power application," Applied Energy, Elsevier, vol. 87(4), pages 1307-1316, April.
    7. Kim, Min Jae & Kim, Jeong Ho & Kim, Tong Seop, 2018. "The effects of internal leakage on the performance of a micro gas turbine," Applied Energy, Elsevier, vol. 212(C), pages 175-184.
    8. Zhang, Yi & Xu, Yujie & Zhou, Xuezhi & Guo, Huan & Zhang, Xinjing & Chen, Haisheng, 2019. "Compressed air energy storage system with variable configuration for accommodating large-amplitude wind power fluctuation," Applied Energy, Elsevier, vol. 239(C), pages 957-968.
    9. Liya Ren & Huaixin Wang, 2020. "Optimization and Comparison of Two Combined Cycles Consisting of CO 2 and Organic Trans-Critical Cycle for Waste Heat Recovery," Energies, MDPI, vol. 13(3), pages 1-16, February.
    10. Sayyaadi, Hoseyn & Mehrabipour, Reza, 2012. "Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger," Energy, Elsevier, vol. 38(1), pages 362-375.
    11. Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2015. "Dynamic behaviour analysis of a three pressure level heat recovery steam generator during transient operation," Energy, Elsevier, vol. 90(P2), pages 1595-1605.
    12. Orlandini, Valentina & Pierobon, Leonardo & Schløer, Signe & De Pascale, Andrea & Haglind, Fredrik, 2016. "Dynamic performance of a novel offshore power system integrated with a wind farm," Energy, Elsevier, vol. 109(C), pages 236-247.
    13. Jiménez-Espadafor Aguilar, Francisco & García, Miguel Torres & Trujillo, Elisa Carvajal & Becerra Villanueva, José Antonio & Florencio Ojeda, Francisco J., 2011. "Prediction of performance, energy savings and increase in profitability of two gas turbine steam generator cogeneration plant, based on experimental data," Energy, Elsevier, vol. 36(2), pages 742-754.
    14. Gürgen, Samet & Altın, İsmail, 2022. "Novel decision-making strategy for working fluid selection in Organic Rankine Cycle: A case study for waste heat recovery of a marine diesel engine," Energy, Elsevier, vol. 252(C).
    15. Zhang, Xinjing & Chen, Haisheng & Xu, Yujie & Li, Wen & He, Fengjuan & Guo, Huan & Huang, Ye, 2017. "Distributed generation with energy storage systems: A case study," Applied Energy, Elsevier, vol. 204(C), pages 1251-1263.
    16. Duan, Liqiang & Wang, Zhen & Guo, Yaofei, 2020. "Off-design performance characteristics study on ISCC system with solar direct steam generation system," Energy, Elsevier, vol. 205(C).
    17. Pierobon, Leonardo & Casati, Emiliano & Casella, Francesco & Haglind, Fredrik & Colonna, Piero, 2014. "Design methodology for flexible energy conversion systems accounting for dynamic performance," Energy, Elsevier, vol. 68(C), pages 667-679.
    18. Rosner, Fabian & Samuelsen, Scott, 2022. "Thermo-economic analysis of a solid oxide fuel cell-gas turbine hybrid with commercial off-the-shelf gas turbine," Applied Energy, Elsevier, vol. 324(C).
    19. Jiang, Yuemao & Ma, Yue & Han, Fenghui & Ji, Yulong & Cai, Wenjian & Wang, Zhe, 2023. "Assessment and optimization of a novel waste heat stepped utilization system integrating partial heating sCO2 cycle and ejector refrigeration cycle using zeotropic mixtures for gas turbine," Energy, Elsevier, vol. 265(C).
    20. Turan, Onder & Aydin, Hakan, 2014. "Exergetic and exergo-economic analyses of an aero-derivative gas turbine engine," Energy, Elsevier, vol. 74(C), pages 638-650.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:2:p:562-570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.