IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v239y2019icp957-968.html
   My bibliography  Save this article

Compressed air energy storage system with variable configuration for accommodating large-amplitude wind power fluctuation

Author

Listed:
  • Zhang, Yi
  • Xu, Yujie
  • Zhou, Xuezhi
  • Guo, Huan
  • Zhang, Xinjing
  • Chen, Haisheng

Abstract

Wind speed varies randomly over a wide range, causing the output wind power to fluctuate in large amplitude. An adiabatic compressed air energy storage (A-CAES) system with variable configuration (VC-ACAES) is proposed to cope with the significant power fluctuations of wind farm. It broadens the operational range of A-CAES system by allowing multistage compressor and multistage expander to operate under variable modes. Off-design modelling of the VC-ACAES system is constructed. Based on the characteristics of a real wind farm rated at 49.5 MW in China, a matching VC-ACAES system is designed. With variable configuration, it is possible to increase operational ranges of compressor and expander of the proposed system by 70.85% and 27.27% respectively. VC-ACAES system performance when integrated with wind plant is investigated and analysed. Results indicate that after integration with the VC-ACAES system, wind power (average: 21.05 MW) with fluctuations up to 49.5 MW can be stabilized to a steady electric power of 18.64 MW, and wind power utilization coefficient is increased from 26.29% to 71.02%.

Suggested Citation

  • Zhang, Yi & Xu, Yujie & Zhou, Xuezhi & Guo, Huan & Zhang, Xinjing & Chen, Haisheng, 2019. "Compressed air energy storage system with variable configuration for accommodating large-amplitude wind power fluctuation," Applied Energy, Elsevier, vol. 239(C), pages 957-968.
  • Handle: RePEc:eee:appene:v:239:y:2019:i:c:p:957-968
    DOI: 10.1016/j.apenergy.2019.01.250
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919302788
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alami, Abdul Hai & Aokal, Kamilia & Abed, Jehad & Alhemyari, Mohammad, 2017. "Low pressure, modular compressed air energy storage (CAES) system for wind energy storage applications," Renewable Energy, Elsevier, vol. 106(C), pages 201-211.
    2. Zeng, Bo & Zeng, Ming & Xue, Song & Cheng, Min & Wang, Yuejin & Feng, Junjie, 2014. "Overall review of wind power development in Inner Mongolia: Status quo, barriers and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 614-624.
    3. Haisheng Chen & Xinjing Zhang & Jinchao Liu & Chunqing Tan, 2013. "Compressed Air Energy Storage," Chapters, in: Ahmed F. Zobaa (ed.), Energy Storage - Technologies and Applications, IntechOpen.
    4. Succar, Samir & Denkenberger, David C. & Williams, Robert H., 2012. "Optimization of specific rating for wind turbine arrays coupled to compressed air energy storage," Applied Energy, Elsevier, vol. 96(C), pages 222-234.
    5. Zhao, Haoran & Wu, Qiuwei & Hu, Shuju & Xu, Honghua & Rasmussen, Claus Nygaard, 2015. "Review of energy storage system for wind power integration support," Applied Energy, Elsevier, vol. 137(C), pages 545-553.
    6. Haglind, F. & Elmegaard, B., 2009. "Methodologies for predicting the part-load performance of aero-derivative gas turbines," Energy, Elsevier, vol. 34(10), pages 1484-1492.
    7. Luo, Guo-liang & Li, Yan-ling & Tang, Wen-jun & Wei, Xiao, 2016. "Wind curtailment of China׳s wind power operation: Evolution, causes and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1190-1201.
    8. Venkataramani, Gayathri & Parankusam, Prasanna & Ramalingam, Velraj & Wang, Jihong, 2016. "A review on compressed air energy storage – A pathway for smart grid and polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 895-907.
    9. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2016. "A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves," Applied Energy, Elsevier, vol. 178(C), pages 758-772.
    10. Kim, Y.M. & Shin, D.G. & Favrat, D., 2011. "Operating characteristics of constant-pressure compressed air energy storage (CAES) system combined with pumped hydro storage based on energy and exergy analysis," Energy, Elsevier, vol. 36(10), pages 6220-6233.
    11. Zhang, Xinjing & Chen, Haisheng & Xu, Yujie & Li, Wen & He, Fengjuan & Guo, Huan & Huang, Ye, 2017. "Distributed generation with energy storage systems: A case study," Applied Energy, Elsevier, vol. 204(C), pages 1251-1263.
    12. Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
    13. Sun, Hao & Luo, Xing & Wang, Jihong, 2015. "Feasibility study of a hybrid wind turbine system – Integration with compressed air energy storage," Applied Energy, Elsevier, vol. 137(C), pages 617-628.
    14. Marano, Vincenzo & Rizzo, Gianfranco & Tiano, Francesco Antonio, 2012. "Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage," Applied Energy, Elsevier, vol. 97(C), pages 849-859.
    15. Shaw, Dein & Cai, Jyun-Yu & Liu, Chien-Ting, 2012. "Efficiency analysis and controller design of a continuous variable planetary transmission for a CAES wind energy system," Applied Energy, Elsevier, vol. 100(C), pages 118-126.
    16. Chen, Jie & Liu, Wei & Jiang, Deyi & Zhang, Junwei & Ren, Song & Li, Lin & Li, Xiaokang & Shi, Xilin, 2017. "Preliminary investigation on the feasibility of a clean CAES system coupled with wind and solar energy in China," Energy, Elsevier, vol. 127(C), pages 462-478.
    17. Sciacovelli, Adriano & Li, Yongliang & Chen, Haisheng & Wu, Yuting & Wang, Jihong & Garvey, Seamus & Ding, Yulong, 2017. "Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – Link between components performance and plant performance," Applied Energy, Elsevier, vol. 185(P1), pages 16-28.
    18. Ghorbanian, K. & Gholamrezaei, M., 2009. "An artificial neural network approach to compressor performance prediction," Applied Energy, Elsevier, vol. 86(7-8), pages 1210-1221, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2017. "Sensitivity analysis for the energy performance assessment of hybrid compressed air energy storage systems," Applied Energy, Elsevier, vol. 206(C), pages 1552-1563.
    2. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2016. "A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves," Applied Energy, Elsevier, vol. 178(C), pages 758-772.
    3. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    4. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    5. Tong, Zheming & Cheng, Zhewu & Tong, Shuiguang, 2021. "A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Yuan, Jiahang & Luo, Xinggang & Li, Zhendong & Li, Lingfei & Ji, Pengli & Zhou, Qing & Zhang, Zhongliang, 2021. "Sustainable development evaluation on wind power compressed air energy storage projects based on multi-source heterogeneous data," Renewable Energy, Elsevier, vol. 169(C), pages 1175-1189.
    7. Camargos, Tomás P.L. & Pottie, Daniel L.F. & Ferreira, Rafael A.M. & Maia, Thales A.C. & Porto, Matheus P., 2018. "Experimental study of a PH-CAES system: Proof of concept," Energy, Elsevier, vol. 165(PA), pages 630-638.
    8. Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Pottie, Daniel L.F. & Ferreira, Rafael A.M. & Maia, Thales A.C. & Porto, Matheus P., 2020. "An alternative sequence of operation for Pumped-Hydro Compressed Air Energy Storage (PH-CAES) systems," Energy, Elsevier, vol. 191(C).
    10. Venkataramani, Gayathri & Parankusam, Prasanna & Ramalingam, Velraj & Wang, Jihong, 2016. "A review on compressed air energy storage – A pathway for smart grid and polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 895-907.
    11. Thomas Guewouo & Lingai Luo & Dominique Tarlet & Mohand Tazerout, 2019. "Identification of Optimal Parameters for a Small-Scale Compressed-Air Energy Storage System Using Real Coded Genetic Algorithm," Energies, MDPI, vol. 12(3), pages 1-32, January.
    12. He, Yang & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2018. "Compression performance optimization considering variable charge pressure in an adiabatic compressed air energy storage system," Energy, Elsevier, vol. 165(PB), pages 349-359.
    13. Zhou, Qian & Du, Dongmei & Lu, Chang & He, Qing & Liu, Wenyi, 2019. "A review of thermal energy storage in compressed air energy storage system," Energy, Elsevier, vol. 188(C).
    14. Venkataramani, Gayathri & Vijayamithran, Pranesh & Li, Yongliang & Ding, Yulong & Chen, Haisheng & Ramalingam, Velraj, 2019. "Thermodynamic analysis on compressed air energy storage augmenting power / polygeneration for roundtrip efficiency enhancement," Energy, Elsevier, vol. 180(C), pages 107-120.
    15. Zhan, Junpeng & Ansari, Osama Aslam & Liu, Weijia & Chung, C.Y., 2019. "An accurate bilinear cavern model for compressed air energy storage," Applied Energy, Elsevier, vol. 242(C), pages 752-768.
    16. Li, Ruixiong & Wang, Huanran & Zhang, Haoran, 2019. "Dynamic simulation of a cooling, heating and power system based on adiabatic compressed air energy storage," Renewable Energy, Elsevier, vol. 138(C), pages 326-339.
    17. Zhang, Yi & Xu, Yujie & Guo, Huan & Zhang, Xinjing & Guo, Cong & Chen, Haisheng, 2018. "A hybrid energy storage system with optimized operating strategy for mitigating wind power fluctuations," Renewable Energy, Elsevier, vol. 125(C), pages 121-132.
    18. He, Qing & Liu, Hui & Hao, Yinping & Liu, Yaning & Liu, Wenyi, 2018. "Thermodynamic analysis of a novel supercritical compressed carbon dioxide energy storage system through advanced exergy analysis," Renewable Energy, Elsevier, vol. 127(C), pages 835-849.
    19. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    20. Valdivia, Patricio & Barraza, Rodrigo & Saldivia, David & Gacitúa, Leonardo & Barrueto, Aldo & Estay, Danilo, 2020. "Assessment of a Compressed Air Energy Storage System using gas pipelines as storage devices in Chile," Renewable Energy, Elsevier, vol. 147(P1), pages 1251-1265.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:239:y:2019:i:c:p:957-968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.