IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2016i1p11-d85978.html
   My bibliography  Save this article

Generic Combined Heat and Power (CHP) Model for the Concept Phase of Energy Planning Process

Author

Listed:
  • Satya Gopisetty

    (Department of Mechanical and Process Engineering, Offenburg University of Applied Sciences, Badstr. 24, 77652 Offenburg, Germany
    Graduate School KleE, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg im Breisgau, Germany)

  • Peter Treffinger

    (Department of Mechanical and Process Engineering, Offenburg University of Applied Sciences, Badstr. 24, 77652 Offenburg, Germany)

Abstract

Micro gas turbines (MGTs) are regarded as combined heat and power (CHP) units which offer high fuel utilization and low emissions. They are applied in decentralized energy generation. To facilitate the planning process of energy systems, namely in the context of the increasing application of optimization techniques, there is a need for easy-to-parametrize component models with sufficient accuracy which allow a fast computation. In this paper, a model is proposed where the non-linear part load characteristics of the MGT are linearized by means of physical insight of the working principles of turbomachinery. Further, it is shown that the model can be parametrized by the data usually available in spec sheets. With this model a uniform description of MGTs from several manufacturers covering an electrical power range from 30 k W to 333 k W can be obtained. The MGT model was implemented by means of Modelica/Dymola. The resulting MGT system model, comprising further heat exchangers and hydraulic components, was validated using the experimental data of a 65 k W MGT from a trigeneration energy system.

Suggested Citation

  • Satya Gopisetty & Peter Treffinger, 2016. "Generic Combined Heat and Power (CHP) Model for the Concept Phase of Energy Planning Process," Energies, MDPI, vol. 10(1), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:10:y:2016:i:1:p:11-:d:85978
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/1/11/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/1/11/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Basrawi, Mohamad Firdaus Bin & Yamada, Takanobu & Nakanishi, Kimio & Katsumata, Hideaki, 2012. "Analysis of the performances of biogas-fuelled micro gas turbine cogeneration systems (MGT-CGSs) in middle- and small-scale sewage treatment plants: Comparison of performances and optimization of MGTs," Energy, Elsevier, vol. 38(1), pages 291-304.
    2. Monteiro, Eliseu & Moreira, Nuno Afonso & Ferreira, Sérgio, 2009. "Planning of micro-combined heat and power systems in the Portuguese scenario," Applied Energy, Elsevier, vol. 86(3), pages 290-298, March.
    3. Kim, T.S. & Hwang, S.H., 2006. "Part load performance analysis of recuperated gas turbines considering engine configuration and operation strategy," Energy, Elsevier, vol. 31(2), pages 260-277.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lizhi Zhang & Fan Li & Bo Sun & Chenghui Zhang, 2019. "Integrated Optimization Design of Combined Cooling, Heating, and Power System Coupled with Solar and Biomass Energy," Energies, MDPI, vol. 12(4), pages 1-21, February.
    2. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    3. Jiyuan Kuang & Chenghui Zhang & Fan Li & Bo Sun, 2018. "Dynamic Optimization of Combined Cooling, Heating, and Power Systems with Energy Storage Units," Energies, MDPI, vol. 11(9), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González, Arnau & Riba, Jordi-Roger & Puig, Rita & Navarro, Pere, 2015. "Review of micro- and small-scale technologies to produce electricity and heat from Mediterranean forests׳ wood chips," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 143-155.
    2. Jiang, Kai & Yan, Xiaohe & Liu, Nian & Wang, Peng, 2022. "Energy trade-offs in coupled ICM and electricity market under dynamic carbon emission intensity," Energy, Elsevier, vol. 260(C).
    3. Valdés, Manuel & Abbas, Rubén & Rovira, Antonio & Martín-Aragón, Javier, 2016. "Thermal efficiency of direct, inverse and sCO2 gas turbine cycles intended for small power plants," Energy, Elsevier, vol. 100(C), pages 66-72.
    4. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    5. Ali, Syed Muhammad Hassan & Lenzen, Manfred & Sack, Fabian & Yousefzadeh, Moslem, 2020. "Electricity generation and demand flexibility in wastewater treatment plants: Benefits for 100% renewable electricity grids," Applied Energy, Elsevier, vol. 268(C).
    6. Lee, Jong Jun & Jeon, Mu Sung & Kim, Tong Seop, 2010. "The influence of water and steam injection on the performance of a recuperated cycle microturbine for combined heat and power application," Applied Energy, Elsevier, vol. 87(4), pages 1307-1316, April.
    7. Kim, Min Jae & Kim, Jeong Ho & Kim, Tong Seop, 2018. "The effects of internal leakage on the performance of a micro gas turbine," Applied Energy, Elsevier, vol. 212(C), pages 175-184.
    8. Li, C.Y. & Wu, J.Y. & Shen, Y. & Kan, X. & Dai, Y.J. & Wang, C.-H., 2018. "Evaluation of a combined cooling, heating, and power system based on biomass gasification in different climate zones in the U.S," Energy, Elsevier, vol. 144(C), pages 326-340.
    9. Gimelli, A. & Mottola, F. & Muccillo, M. & Proto, D. & Amoresano, A. & Andreotti, A. & Langella, G., 2019. "Optimal configuration of modular cogeneration plants integrated by a battery energy storage system providing peak shaving service," Applied Energy, Elsevier, vol. 242(C), pages 974-993.
    10. Tappen, S.J. & Aschmann, V. & Effenberger, M., 2017. "Lifetime development and load response of the electrical efficiency of biogas-driven cogeneration units," Renewable Energy, Elsevier, vol. 114(PB), pages 857-865.
    11. Lombardi, K. & Ugursal, V.I. & Beausoleil-Morrison, I., 2010. "Proposed improvements to a model for characterizing the electrical and thermal energy performance of Stirling engine micro-cogeneration devices based upon experimental observations," Applied Energy, Elsevier, vol. 87(10), pages 3271-3282, October.
    12. Venkatesh, G. & Elmi, Rashid Abdi, 2013. "Economic–environmental analysis of handling biogas from sewage sludge digesters in WWTPs (wastewater treatment plants) for energy recovery: Case study of Bekkelaget WWTP in Oslo (Norway)," Energy, Elsevier, vol. 58(C), pages 220-235.
    13. Sayyaadi, Hoseyn & Mehrabipour, Reza, 2012. "Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger," Energy, Elsevier, vol. 38(1), pages 362-375.
    14. Maghanki, Maryam Mohammadi & Ghobadian, Barat & Najafi, Gholamhassan & Galogah, Reza Janzadeh, 2013. "Micro combined heat and power (MCHP) technologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 510-524.
    15. Monteiro, Eliseu & Ramos, Ana & Rouboa, Abel, 2024. "Fundamental designs of gasification plants for combined heat and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    16. Caresana, Flavio & Brandoni, Caterina & Feliciotti, Petro & Bartolini, Carlo Maria, 2011. "Energy and economic analysis of an ICE-based variable speed-operated micro-cogenerator," Applied Energy, Elsevier, vol. 88(3), pages 659-671, March.
    17. Jiménez-Espadafor Aguilar, Francisco & García, Miguel Torres & Trujillo, Elisa Carvajal & Becerra Villanueva, José Antonio & Florencio Ojeda, Francisco J., 2011. "Prediction of performance, energy savings and increase in profitability of two gas turbine steam generator cogeneration plant, based on experimental data," Energy, Elsevier, vol. 36(2), pages 742-754.
    18. Nikpey, H. & Assadi, M. & Breuhaus, P. & Mørkved, P.T., 2014. "Experimental evaluation and ANN modeling of a recuperative micro gas turbine burning mixtures of natural gas and biogas," Applied Energy, Elsevier, vol. 117(C), pages 30-41.
    19. Kim, Yungjin & Kawahara, Nobuyuki & Tsuboi, Kazuya & Tomita, Eiji, 2016. "Combustion characteristics and NOX emissions of biogas fuels with various CO2 contents in a micro co-generation spark-ignition engine," Applied Energy, Elsevier, vol. 182(C), pages 539-547.
    20. Duan, Liqiang & Wang, Zhen & Guo, Yaofei, 2020. "Off-design performance characteristics study on ISCC system with solar direct steam generation system," Energy, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2016:i:1:p:11-:d:85978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.