IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v313y2015icp13-28.html
   My bibliography  Save this article

Modelling the dynamics of a plant pathogen and a biological control agent in relation to flowering pattern and populations present on leaves

Author

Listed:
  • Jeger, M.J.
  • Xu, X.-M.

Abstract

A flexible model for biological control of a plant pathogen affecting host flowers is developed which takes into account the transfer of both the plant pathogen and the biological control agent (BCA) from the leaves to flowers. Because flowers, other than in ornamental plants, are largely ephemeral, the emphasis in analysis is on the rates of transfer and establishment on flowers. The form of the model analysed depends upon: the pattern of flowering for a particular host plant, a single instantaneous flush or continuous seasonal production; the effect of flowering phenology and morphology on transfer of both the pathogen and BCA; and the transient dynamics of such transfer. In the case of a single instantaneous flush, the relative importance of mycoparasitism and competition in protecting flowers during their short period of blooming is assessed. Where flowering is continuous but transfer lags behind because of floral phenology or morphology, a comparison is made between the initial levels of the pathogen and the BCA as they transfer to the flowers, depending again on the relative contribution of mycoparasitism and competition over the extended period of blooming. Differential rates of transfer of the pathogen and the BCA, depending on their time-dependent population densities on leaves, have a major impact on eventual biocontrol outcomes. The model results are used to analyse biocontrol strategies for contrasting host-pathogen systems which show different flowering patterns and biological control mechanisms. For Erwinia amylovora causing fireblight in pome fruit trees, an inundative biocontrol strategy targeting flowers is supported. In Botrytis cinerea, there is considerable potential for a strategy based on the establishment of BCAs on leaves for some of the plant hosts affected.

Suggested Citation

  • Jeger, M.J. & Xu, X.-M., 2015. "Modelling the dynamics of a plant pathogen and a biological control agent in relation to flowering pattern and populations present on leaves," Ecological Modelling, Elsevier, vol. 313(C), pages 13-28.
  • Handle: RePEc:eee:ecomod:v:313:y:2015:i:c:p:13-28
    DOI: 10.1016/j.ecolmodel.2015.06.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015002641
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.06.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvia Traversari & Sonia Cacini & Angelica Galieni & Beatrice Nesi & Nicola Nicastro & Catello Pane, 2021. "Precision Agriculture Digital Technologies for Sustainable Fungal Disease Management of Ornamental Plants," Sustainability, MDPI, vol. 13(7), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:313:y:2015:i:c:p:13-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.