IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p9309-d617443.html
   My bibliography  Save this article

Natural Infrastructure Practices as Potential Flood Storage and Reduction for Farms and Rural Communities in the North Carolina Coastal Plain

Author

Listed:
  • Meredith Hovis

    (Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA)

  • Joseph Chris Hollinger

    (Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA)

  • Frederick Cubbage

    (Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA)

  • Theodore Shear

    (Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA)

  • Barbara Doll

    (Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA)

  • J. Jack Kurki-Fox

    (Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA)

  • Daniel Line

    (Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA)

  • Andrew Fox

    (College of Design, North Carolina State University, Raleigh, NC 27695, USA)

  • Madalyn Baldwin

    (College of Design, North Carolina State University, Raleigh, NC 27695, USA)

  • Travis Klondike

    (College of Design, North Carolina State University, Raleigh, NC 27695, USA)

  • Michelle Lovejoy

    (North Carolina Foundation for Soil and Water Conservation, Raleigh, NC 27695, USA)

  • Bryan Evans

    (North Carolina Association of Soil and Water Conservation Districts, Raleigh, NC 27695, USA)

  • Jaclyn West

    (Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA)

  • Thomas Potter

    (North Carolina Foundation for Soil and Water Conservation, Raleigh, NC 27695, USA)

Abstract

Increased global temperatures resulting from anthropogenically induced climate changes have increased the frequency and severity of adverse weather events, including extreme rainfall events, floods, and droughts. In recent years, nature-based solutions (NBS) have been proposed to retain storm runoff temporarily and mitigate flood damages. These practices may help rural farm and forest lands to store runoff and reduce flooding on farms and downstream communities and could be incorporated into a conservation program to provide payments for these efforts, which would supplement traditional farm incomes. Despite their potential, there have been very few methodical assessments and detailed summaries of NBS to date. We identified and summarized potential flood reduction practices for the Coastal Plain of North Carolina. These include agricultural practices of (1) cover cropping/no-till farming; (2) hardpan breakup; (3) pine or (4) hardwood afforestation, and (5) agroforestry; establishing the wetland and stream practices of (6) grass and sedge wetlands and earthen retention structures, (7) forest wetland banks, and (8) stream channel restoration; and establishing new structural solutions of (9) dry dams and berms (water farming) and (10) tile drainage and water retention. These practices offer different water holding and storage capacities and costs. A mixture of practices at the farm and landscape level can be implemented for floodwater retention and attenuation and damage reduction, as well as for providing additional farm and forest ecosystem services.

Suggested Citation

  • Meredith Hovis & Joseph Chris Hollinger & Frederick Cubbage & Theodore Shear & Barbara Doll & J. Jack Kurki-Fox & Daniel Line & Andrew Fox & Madalyn Baldwin & Travis Klondike & Michelle Lovejoy & Brya, 2021. "Natural Infrastructure Practices as Potential Flood Storage and Reduction for Farms and Rural Communities in the North Carolina Coastal Plain," Sustainability, MDPI, vol. 13(16), pages 1-25, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9309-:d:617443
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/9309/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/9309/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qi, Zhiming & Helmers, Matthew J. & Kaleita, Amy L., 2011. "Soil water dynamics under various agricultural land covers on a subsurface drained field in north-central Iowa, USA," Agricultural Water Management, Elsevier, vol. 98(4), pages 665-674, February.
    2. Sarah E. Castle & Daniel C. Miller & Pablo J. Ordonez & Kathy Baylis & Karl Hughes, 2021. "The impacts of agroforestry interventions on agricultural productivity, ecosystem services, and human well‐being in low‐ and middle‐income countries: A systematic review," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(2), June.
    3. S. Jonkman, 2005. "Global Perspectives on Loss of Human Life Caused by Floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 34(2), pages 151-175, February.
    4. Templeton, Scott R. & Dumas, Christopher F. & Sessions, William T. & Victoria, Melanie, 2009. "Estimation and Analysis of Expenses of In-Lieu-Fee Projects that Mitigate Damage to Streams from Land Disturbance in North Carolina," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49552, Agricultural and Applied Economics Association.
    5. Edyta Kiedrzyńska & Marcin Kiedrzyński & Maciej Zalewski, 2015. "Sustainable floodplain management for flood prevention and water quality improvement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 955-977, March.
    6. Cary, Michael A. & Frey, Gregory E., 2020. "Alley cropping as an alternative under changing climate and risk scenarios: A Monte-Carlo simulation approach," Agricultural Systems, Elsevier, vol. 185(C).
    7. Robin Bloch & Abhas K. Jha & Jessica Lamond, 2012. "Cities and Flooding : A Guide to Integrated Urban Flood Risk Management for the 21st Century [Ciudades e Inundaciones : guía para la gestión integrada del riesgo de inundaciones en ciudades en el S," World Bank Publications - Books, The World Bank Group, number 2241.
    8. Melts, Indrek & Ivask, Mari & Geetha, Mohan & Takeuchi, Kazuhiko & Heinsoo, Katrin, 2019. "Combining bioenergy and nature conservation: An example in wetlands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 293-302.
    9. Andrea D Basche & Marcia S DeLonge, 2019. "Comparing infiltration rates in soils managed with conventional and alternative farming methods: A meta-analysis," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-22, September.
    10. Basche, Andrea D. & Kaspar, Thomas C. & Archontoulis, Sotirios V. & Jaynes, Dan B. & Sauer, Thomas J. & Parkin, Timothy B. & Miguez, Fernando E., 2016. "Soil water improvements with the long-term use of a winter rye cover crop," Agricultural Water Management, Elsevier, vol. 172(C), pages 40-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Madalyn Baldwin & Andrew Fox & Travis Klondike & Meredith Hovis & Theodore Shear & Lauren Joca & Megan Hester & Frederick Cubbage, 2022. "Geospatial Analysis and Land Suitability for “FloodWise” Practices: Nature-Based Solutions for Flood Mitigation in Eastern, Rural North Carolina," Land, MDPI, vol. 11(9), pages 1-28, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jun & Zhang, Shaohong & Sainju, Upendra M. & Ghimire, Rajan & Zhao, Fazhu, 2021. "A meta-analysis on cover crop impact on soil water storage, succeeding crop yield, and water-use efficiency," Agricultural Water Management, Elsevier, vol. 256(C).
    2. Ibidun Adelekan & Adeniyi Asiyanbi, 2016. "Flood risk perception in flood-affected communities in Lagos, Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 445-469, January.
    3. Sandhya Karki & M. Arlene A. Adviento-Borbe & Joseph H. Massey & Michele L. Reba, 2021. "Assessing Seasonal Methane and Nitrous Oxide Emissions from Furrow-Irrigated Rice with Cover Crops," Agriculture, MDPI, vol. 11(3), pages 1-15, March.
    4. Li, Yizhuo & Tian, Di & Feng, Gary & Yang, Wei & Feng, Liping, 2021. "Climate change and cover crop effects on water use efficiency of a corn-soybean rotation system," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Schomberg, Harry H. & White, Kathryn E. & Thompson, Alondra I. & Bagley, Gwendolyn A. & Burke, Allen & Garst, Grace & Bybee-Finley, K. Ann & Mirsky, Steven B., 2023. "Interseeded cover crop mixtures influence soil water storage during the corn phase of corn-soybean-wheat no-till cropping systems," Agricultural Water Management, Elsevier, vol. 278(C).
    6. Yang, Wei & Feng, Gary & Adeli, Ardeshir & Kersebaum, K.C. & Jenkins, Johnie N. & Li, Pinfang, 2019. "Long-term effect of cover crop on rainwater balance components and use efficiency in the no-tilled and rainfed corn and soybean rotation system," Agricultural Water Management, Elsevier, vol. 219(C), pages 27-39.
    7. Bowman, Maria & Afi, Maroua & Beenken, Aubree & Boline, Amy & Drewnoski, Mary & Krupek, Fernanda Souza & Parsons, Jay & Redfearn, Daren & Wallander, Steven & Whitt, Christine, 2024. "Cover Crops on Livestock Operations: Potential for Expansion in the United States," Administrative Publications 342471, United States Department of Agriculture, Economic Research Service.
    8. Davor Kvočka & Roger A. Falconer & Michaela Bray, 2016. "Flood hazard assessment for extreme flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1569-1599, December.
    9. Schilling, Keith E. & Streeter, Matthew T. & Gibertini-Diaz, Valerie & Betret, Eustice & Arenas-Amado, Antonio, 2024. "Hydrogeology and subsurface water flow beneath grass waterways: Implications for exploiting waterways for nitrate reductions," Agricultural Water Management, Elsevier, vol. 298(C).
    10. Rebecca E. Morss & Julie L. Demuth & Ann Bostrom & Jeffrey K. Lazo & Heather Lazrus, 2015. "Flash Flood Risks and Warning Decisions: A Mental Models Study of Forecasters, Public Officials, and Media Broadcasters in Boulder, Colorado," Risk Analysis, John Wiley & Sons, vol. 35(11), pages 2009-2028, November.
    11. Juwon Lee & Giorgio Antonini & Ahmed Al-Omari & Christopher Muller & Jithin Mathew & Katherine Bell & Joshua M. Pearce & Domenico Santoro, 2024. "Electrochemical Methods for Nutrient Removal in Wastewater: A Review of Advanced Electrode Materials, Processes, and Applications," Sustainability, MDPI, vol. 16(22), pages 1-23, November.
    12. Jiayu Ding & Yuewei Wang & Chaoyue Li, 2024. "A Dual-Layer Complex Network-Based Quantitative Flood Vulnerability Assessment Method of Transportation Systems," Land, MDPI, vol. 13(6), pages 1-27, May.
    13. Thiesmeier, Alma & Zander, Peter, 2023. "Can agroforestry compete? A scoping review of the economic performance of agroforestry practices in Europe and North America," Forest Policy and Economics, Elsevier, vol. 150(C).
    14. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    15. Sivadasan, Jagadeesh & Xu, Wenjian, 2021. "Missing women in India: Gender-specific effects of early-life rainfall shocks," World Development, Elsevier, vol. 148(C).
    16. Abdelmonaim Okacha & Adil Salhi & Kamal Abdelrahman & Hamid Fattasse & Kamal Lahrichi & Kaoutar Bakhouya & Biraj Kanti Mondal, 2024. "Balancing Environmental and Human Needs: Geographic Information System-Based Analytical Hierarchy Process Land Suitability Planning for Emerging Urban Areas in Bni Bouayach Amid Urban Transformation," Sustainability, MDPI, vol. 16(15), pages 1-24, July.
    17. Neslihan Beden & Asli Ulke Keskin, 2021. "Estimation of the local financial costs of flood damage with different methodologies in Unye (Ordu), Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2835-2854, September.
    18. Somayeh Ahmadi & Rezvan Ghanbari Movahed & Saeed Gholamrezaie & Mehdi Rahimian, 2022. "Assessing the Vulnerability of Rural Households to Floods at Pol-e Dokhtar Region in Iran," Sustainability, MDPI, vol. 14(2), pages 1-17, January.
    19. María Isabel Arango & Edier Aristizábal & Federico Gómez, 2021. "Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 983-1012, January.
    20. Rath, S. & Zamora-Re, M. & Graham, W. & Dukes, M. & Kaplan, D., 2021. "Quantifying nitrate leaching to groundwater from a corn-peanut rotation under a variety of irrigation and nutrient management practices in the Suwannee River Basin, Florida," Agricultural Water Management, Elsevier, vol. 246(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9309-:d:617443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.