IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i9d10.1007_s11069-025-07228-w.html
   My bibliography  Save this article

Flash flood data compilation and risk insights in Peninsular Malaysia: a data-driven analysis (2014–2019)

Author

Listed:
  • Raidan Maqtan

    (Universiti Malaya
    University of Aden)

  • Faridah Othman

    (Universiti Malaya)

  • Wan Zurina Wan Jaafar

    (Universiti Malaya)

  • Ahmed Elshafie

    (National Water and Energy Center, United Arab Emirate University)

Abstract

Flash floods pose significant challenges, yet comprehensive data on their occurrences and impacts in Southeast Asia, particularly Malaysia, remain sparse. In this study, 745 flash flood events in Peninsular Malaysia from 2014 to 2019 were systematically compiled and analyzed to identify patterns and contributing factors. Events were categorized based on rainfall duration, flood duration, and causes. Pluvial flash floods, accounting for 60% of cases, were primarily linked to inadequate drainage systems. Flash floods were most frequent during the northeast monsoon (October-January, 49%), followed by the southwest monsoon (June-August, 18%), indicating seasonal variations. Selangor and Penang experienced the highest event frequencies, with notable differences in triggering rainfall thresholds. In contrast, Johor and Melaka recorded fewer events despite having higher rainfall intensities. These findings underscore the need for improved drainage infrastructures and targeted mitigation strategies tailored to regional and seasonal flood dynamics. The study provides a foundational framework for risk assessment and management of flash floods in Peninsular Malaysia.

Suggested Citation

  • Raidan Maqtan & Faridah Othman & Wan Zurina Wan Jaafar & Ahmed Elshafie, 2025. "Flash flood data compilation and risk insights in Peninsular Malaysia: a data-driven analysis (2014–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(9), pages 10421-10447, May.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:9:d:10.1007_s11069-025-07228-w
    DOI: 10.1007/s11069-025-07228-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-025-07228-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-025-07228-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. S. Jonkman, 2005. "Global Perspectives on Loss of Human Life Caused by Floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 34(2), pages 151-175, February.
    2. Shi Chang & Rohan Singh Wilkho & Nasir Gharaibeh & Garett Sansom & Michelle Meyer & Francisco Olivera & Lei Zou, 2023. "Environmental, climatic, and situational factors influencing the probability of fatality or injury occurrence in flash flooding: a rare event logistic regression predictive model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3957-3978, April.
    3. Bingshun He & Xianlong Huang & Meihong Ma & Qingrui Chang & Yong Tu & Qing Li & Ke Zhang & Yang Hong, 2018. "Analysis of flash flood disaster characteristics in China from 2011 to 2015," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 407-420, January.
    4. Ali Bouamrane & Oussama Derdous & Hamza Bouchehed & Habib Abida, 2025. "Assessing future changes in flood susceptibility under projections from the sixth coupled model intercomparison project: case study of Algiers City (Algeria)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(2), pages 2133-2153, January.
    5. P. Peduzzi & H. Herold, 2005. "Mapping Disastrous Natural Hazards Using Global Datasets," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 35(2), pages 265-289, June.
    6. Hasrul Hazman Hasan & Siti Fatin Mohd Razali & Ahmad Zafuan Ibrahim Ahmad Zaki & Firdaus Mohamad Hamzah, 2019. "Integrated Hydrological-Hydraulic Model for Flood Simulation in Tropical Urban Catchment," Sustainability, MDPI, vol. 11(23), pages 1-24, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Barredo, 2007. "Major flood disasters in Europe: 1950–2005," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(1), pages 125-148, July.
    2. Raidan Maqtan & Faridah Othman & Wan Zurina Wan Jaafar & Mohsen Sherif & Ahmed El-Shafie, 2022. "A scoping review of flash floods in Malaysia: current status and the way forward," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2387-2416, December.
    3. Davor Kvočka & Roger A. Falconer & Michaela Bray, 2016. "Flood hazard assessment for extreme flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1569-1599, December.
    4. Rebecca E. Morss & Julie L. Demuth & Ann Bostrom & Jeffrey K. Lazo & Heather Lazrus, 2015. "Flash Flood Risks and Warning Decisions: A Mental Models Study of Forecasters, Public Officials, and Media Broadcasters in Boulder, Colorado," Risk Analysis, John Wiley & Sons, vol. 35(11), pages 2009-2028, November.
    5. Sivadasan, Jagadeesh & Xu, Wenjian, 2021. "Missing women in India: Gender-specific effects of early-life rainfall shocks," World Development, Elsevier, vol. 148(C).
    6. María Isabel Arango & Edier Aristizábal & Federico Gómez, 2021. "Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 983-1012, January.
    7. Jin‐Feng Wang & Lian‐Fa Li, 2008. "Improving Tsunami Warning Systems with Remote Sensing and Geographical Information System Input," Risk Analysis, John Wiley & Sons, vol. 28(6), pages 1653-1668, December.
    8. Yong SHI, 2018. "Assessment of Agricultural Vulnerability to Floods in Shanghai by the DEA Method," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-11, March.
    9. Francesco Serinaldi & Florian Loecker & Chris G. Kilsby & Hubert Bast, 2018. "Flood propagation and duration in large river basins: a data-driven analysis for reinsurance purposes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 71-92, October.
    10. Derly Gómez & Edwin F. García & Edier Aristizábal, 2023. "Spatial and temporal landslide distributions using global and open landslide databases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 25-55, May.
    11. Guoqiang Shen & Long Zhou & Yao Wu & Zhiming Cai, 2018. "A Global Expected Risk Analysis of Fatalities, Injuries, and Damages by Natural Disasters," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    12. Ibidun Adelekan & Adeniyi Asiyanbi, 2016. "Flood risk perception in flood-affected communities in Lagos, Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 445-469, January.
    13. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    14. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.
    15. Christian L. E. Franzke & Herminia Torelló i Sentelles, 2020. "Risk of extreme high fatalities due to weather and climate hazards and its connection to large-scale climate variability," Climatic Change, Springer, vol. 162(2), pages 507-525, September.
    16. Morteza T. Marvi, 2020. "A review of flood damage analysis for a building structure and contents," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 967-995, July.
    17. S. Mosquera-Machado & Sajjad Ahmad, 2007. "Flood hazard assessment of Atrato River in Colombia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 591-609, March.
    18. Liying Sun & Bingjuan Ma & Liang Pei & Xiaohang Zhang & John L. Zhou, 2021. "The relationship of human activities and rainfall-induced landslide and debris flow hazards in Central China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 147-169, May.
    19. Dilshad Ahmad & Mohammad Afzal & Abdur Rauf, 2021. "Farmers’ adaptation decisions to landslides and flash floods in the mountainous region of Khyber Pakhtunkhwa of Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8573-8600, June.
    20. S. N. Jonkman & A. Curran & L. M. Bouwer, 2024. "Floods have become less deadly: an analysis of global flood fatalities 1975–2022," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(7), pages 6327-6342, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:9:d:10.1007_s11069-025-07228-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.