IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i2p538-d307500.html
   My bibliography  Save this article

Evolution and Evaluation of the Guangzhou Metro Network Topology Based on an Integration of Complex Network Analysis and GIS

Author

Listed:
  • Shaopei Chen

    (School of Public Administration, Guangdong University of Finance and Economics, Guangzhou 510320, China)

  • Dachang Zhuang

    (School of Public Administration, Guangdong University of Finance and Economics, Guangzhou 510320, China)

Abstract

This paper takes the metro network of Guangzhou as a case study, and provides a quantitative analysis of the historical development of the network from 1999 to 2018. Particularly, the evolution of the topological structure of the Guangzhou Metro Network (GMN) is evaluated and characterized through the integration of geographic information system (GIS) and complex network analysis. The results show that: (1) The metro network of Guangzhou possesses the basic characteristics of small-world network, (2) with the development of GMN, the network complexity is increased and the spatial dispersion of the nodes tends to ease, but the average travel time and transfer rate continues to rise up, leading to the decreasing of the network transmission efficiency and the scattering of the nodes, (3) a good fault tolerance of the overall metro network of Guangzhou is revealed, but the spatial variance is observed, (4) the peak of degree centrality (DC) of the nodes is gradually moving northward along “Kecun Station–Guangzhou railway station–Jiahe Wanggang station”, while the peak of betweenness centrality (BC) is changing from “Kecun station” to “Jiahe Wanggang station”, and Jiahe Wanggang station has evolved into the most critical node in the current metro network of Guangzhou. In conclusion, this study should provide the scientific basis and significant decision-making support to the planning and operation management of GMN.

Suggested Citation

  • Shaopei Chen & Dachang Zhuang, 2020. "Evolution and Evaluation of the Guangzhou Metro Network Topology Based on an Integration of Complex Network Analysis and GIS," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:538-:d:307500
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/2/538/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/2/538/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thevenin, Thomas & Mimeur, Christophe & Schwartz, Robert & Sapet, Loïc, 2016. "Measuring one century of railway accessibility and population change in France. A historical GIS approach," Journal of Transport Geography, Elsevier, vol. 56(C), pages 62-76.
    2. Latora, Vito & Marchiori, Massimo, 2002. "Is the Boston subway a small-world network?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 109-113.
    3. Sybil Derrible & Christopher Kennedy, 2010. "Characterizing metro networks: state, form, and structure," Transportation, Springer, vol. 37(2), pages 275-297, March.
    4. Tan Yigitcanlar & Md. Kamruzzaman & Suharto Teriman, 2015. "Neighborhood Sustainability Assessment: Evaluating Residential Development Sustainability in a Developing Country Context," Sustainability, MDPI, vol. 7(3), pages 1-33, March.
    5. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    6. Fatih Dur & Tan Yigitcanlar & Jonathan Bunker, 2014. "A Spatial-Indexing Model for Measuring Neighbourhood-Level Land-Use and Transport Integration," Environment and Planning B, , vol. 41(5), pages 792-812, October.
    7. Cats, Oded, 2017. "Topological evolution of a metropolitan rail transport network: The case of Stockholm," Journal of Transport Geography, Elsevier, vol. 62(C), pages 172-183.
    8. Cats, O., 2016. "The robustness value of public transport development plans," Journal of Transport Geography, Elsevier, vol. 51(C), pages 236-246.
    9. Alexander Erath & Michael Löchl & Kay Axhausen, 2009. "Graph-Theoretical Analysis of the Swiss Road and Railway Networks Over Time," Networks and Spatial Economics, Springer, vol. 9(3), pages 379-400, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yangyang Meng & Qingjie Qi & Jianzhong Liu & Wei Zhou, 2022. "Dynamic Evolution Analysis of Complex Topology and Node Importance in Shenzhen Metro Network from 2004 to 2021," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    2. Ting Chen & Jianxiao Ma & Zhenjun Zhu & Xiucheng Guo, 2023. "Evaluation Method for Node Importance of Urban Rail Network Considering Traffic Characteristics," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    3. Ma, Min & Hu, Dawei & Chien, Steven I-Jy & Liu, Jie & Yang, Xing & Ma, Zhuanglin, 2022. "Evolution assessment of urban rail transit networks: A case study of Xi’an, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cats, Oded, 2017. "Topological evolution of a metropolitan rail transport network: The case of Stockholm," Journal of Transport Geography, Elsevier, vol. 62(C), pages 172-183.
    2. Luo, Ding & Cats, Oded & van Lint, Hans & Currie, Graham, 2019. "Integrating network science and public transport accessibility analysis for comparative assessment," Journal of Transport Geography, Elsevier, vol. 80(C).
    3. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    4. Cats, Oded & Krishnakumari, Panchamy, 2020. "Metropolitan rail network robustness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    5. Zhang, Jianhua & Wang, Meng, 2019. "Transportation functionality vulnerability of urban rail transit networks based on movingblock: The case of Nanjing metro," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    6. Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
    7. Rahimi-Golkhandan, Armin & Garvin, Michael J. & Brown, Bryan L., 2019. "Characterizing and measuring transportation infrastructure diversity through linkages with ecological stability theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 114-130.
    8. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    9. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    10. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    11. Laporte, G. & Mesa, J.A. & Ortega, F.A. & Perea, F., 2011. "Planning rapid transit networks," Socio-Economic Planning Sciences, Elsevier, vol. 45(3), pages 95-104, September.
    12. Hu, Xinlei & Huang, Jie & Shi, Feng, 2022. "A robustness assessment with passenger flow data of high-speed rail network in China," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    13. Zhu, Weihua & Liu, Kai & Wang, Ming & Yan, Xiaoyong, 2018. "Enhancing robustness of metro networks using strategic defense," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1081-1091.
    14. Dupuy, Gabriel, 2013. "Network geometry and the urban railway system: the potential benefits to geographers of harnessing inputs from “naive” outsiders," Journal of Transport Geography, Elsevier, vol. 33(C), pages 85-94.
    15. Yin, Dezhi & Huang, Wencheng & Shuai, Bin & Liu, Hongyi & Zhang, Yue, 2022. "Structural characteristics analysis and cascading failure impact analysis of urban rail transit network: From the perspective of multi-layer network," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    16. Dimitrov, Stavri Dimitri & Ceder, Avishai (Avi), 2016. "A method of examining the structure and topological properties of public-transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 373-387.
    17. He, Zhidong & Navneet, Kumar & van Dam, Wirdmer & Van Mieghem, Piet, 2021. "Robustness assessment of multimodal freight transport networks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    18. Lin Zhang & Jian Lu & Bai-bai Fu & Shu-bin Li, 2018. "A Review and Prospect for the Complexity and Resilience of Urban Public Transit Network Based on Complex Network Theory," Complexity, Hindawi, vol. 2018, pages 1-36, December.
    19. Hong, Liu & Ouyang, Min & Xu, Min & Hu, Peipei, 2020. "Time-varied accessibility and vulnerability analysis of integrated metro and high-speed rail systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    20. César Ducruet & Laurent Beauguitte, 2014. "Spatial Science and Network Science: Review and Outcomes of a Complex Relationship," Networks and Spatial Economics, Springer, vol. 14(3), pages 297-316, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:538-:d:307500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.