IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i17p6822-d402661.html
   My bibliography  Save this article

Simulating Soybean–Rice Rotation and Irrigation Strategies in Arkansas, USA Using APEX

Author

Listed:
  • Sam R. Carroll

    (Department of Biological and Agricultural Engineering, College of Engineering, University of Arkansas, Fayetteville, AR 72701, USA)

  • Kieu Ngoc Le

    (Department of Biological and Agricultural Engineering, College of Engineering, University of Arkansas, Fayetteville, AR 72701, USA
    Department of Water Resources, College of Environment and Natural Resources, Can Tho University, Can Tho 900100, Vietnam)

  • Beatriz Moreno-García

    (Department of Biological and Agricultural Engineering, College of Engineering, University of Arkansas, Fayetteville, AR 72701, USA)

  • Benjamin R. K. Runkle

    (Department of Biological and Agricultural Engineering, College of Engineering, University of Arkansas, Fayetteville, AR 72701, USA)

Abstract

With population growth and resource depletion, maximizing the efficiency of soybean ( Glycine max [L.] Merr.) and rice ( Oryza sativa L.) cropping systems is urgently needed. The goal of this study was to shed light on precise irrigation amounts and optimal agronomic practices via simulating rice–rice and soybean–rice crop rotations in the Agricultural Policy/Environmental eXtender (APEX) model. The APEX model was calibrated using observations from five fields under soybean–rice rotation in Arkansas from 2017 to 2019 and remote sensing leaf area index (LAI) values to assess modeled vegetation growth. Different irrigation practices were assessed, including conventional flooding (CVF), known as cascade, multiple inlet rice irrigation with polypipe (MIRI), and furrow irrigation (FIR). The amount of water used differed between fields, following each field’s measured or estimated input. Moreover, fields were managed with either continuous flooding (CF) or alternate wetting and drying (AWD) irrigation. Two 20-year scenarios were simulated to test yield changes: (1) between rice–rice and soybean–rice rotation and (2) under reduced irrigation amounts. After calibration with crop yield and LAI, the modeled LAI correlated to the observations with R 2 values greater than 0.66, and the percent bias (PBIAS) values were within 32%. The PBIAS and percent difference for modeled versus observed yield were within 2.5% for rice and 15% for soybean. Contrary to expectation, the rice–rice and soybean–rice rotation yields were not statistically significant. The results of the reduced irrigation scenario differed by field, but reducing irrigation beyond 20% from the original amount input by the farmers significantly reduced yields in all fields, except for one field that was over-irrigated.

Suggested Citation

  • Sam R. Carroll & Kieu Ngoc Le & Beatriz Moreno-García & Benjamin R. K. Runkle, 2020. "Simulating Soybean–Rice Rotation and Irrigation Strategies in Arkansas, USA Using APEX," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:6822-:d:402661
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/17/6822/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/17/6822/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Philip W. Gassman & Jimmy R. Williams & Xiuying Wang & Ali Saleh & Edward Osei & Larry M. Hauck & R. César Izaurralde & Joan D. Flowers, 2009. "Agricultural Policy Environmental EXtender (APEX) Model: An Emerging Tool for Landscape and Watershed Environmental Analyses, The," Center for Agricultural and Rural Development (CARD) Publications 09-tr49, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    2. Le, Kieu N. & Jeong, Jaehak & Reyes, Manuel R. & Jha, Manoj K. & Gassman, Philip W. & Doro, Luca & Hok, Lyda & Boulakia, Stéphane, 2018. "Evaluation of the performance of the EPIC model for yield and biomass simulation under conservation systems in Cambodia," Agricultural Systems, Elsevier, vol. 166(C), pages 90-100.
    3. Trombetta, Andrea & Iacobellis, Vito & Tarantino, Eufemia & Gentile, Francesco, 2016. "Calibration of the AquaCrop model for winter wheat using MODIS LAI images," Agricultural Water Management, Elsevier, vol. 164(P2), pages 304-316.
    4. Gassman, Philip W. & Williams, Jimmy R. & Wang, Xiuying & Saleh, Ali & Osei, Edward & Hauck, Larry M. & Izaurralde, R. Cesar & Flowers, Joan D., 2009. "The Agricultural Policy Environmental EXtender (APEX) Model: An Emerging Tool for Landscape and Watershed Environmental Analyses," Public Opinion Research 49156, Agriculture and Agri-Food Canada.
    5. Yang, J.M. & Yang, J.Y. & Liu, S. & Hoogenboom, G., 2014. "An evaluation of the statistical methods for testing the performance of crop models with observed data," Agricultural Systems, Elsevier, vol. 127(C), pages 81-89.
    6. Zhang, Bangbang & Feng, Gary & Read, John J. & Kong, Xiangbin & Ouyang, Ying & Adeli, Ardeshir & Jenkins, Johnie N., 2016. "Simulating soybean productivity under rainfed conditions for major soil types using APEX model in East Central Mississippi," Agricultural Water Management, Elsevier, vol. 177(C), pages 379-391.
    7. Rejesus, Roderick M. & Palis, Florencia G. & Rodriguez, Divina Gracia P. & Lampayan, Ruben M. & Bouman, Bas A.M., 2011. "Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines," Food Policy, Elsevier, vol. 36(2), pages 280-288, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edward Osei & Syed H. Jafri & Ali Saleh & Philip W. Gassman & Oscar Gallego, 2023. "Simulated Climate Change Impacts on Corn and Soybean Yields in Buchanan County, Iowa," Agriculture, MDPI, vol. 13(2), pages 1-21, January.
    2. Zhao, Xueyin & Chen, Mengting & Xie, Hua & Luo, Wanqi & Wei, Guangfei & Zheng, Shizong & Wu, Conglin & Khan, Shahbaz & Cui, Yuanlai & Luo, Yufeng, 2023. "Analysis of irrigation demands of rice: Irrigation decision-making needs to consider future rainfall," Agricultural Water Management, Elsevier, vol. 280(C).
    3. Lin, Yu-Pin & Hsu, Chia- Chuan & Wuryandani, Shafira & Yang, Feng-An, 2024. "A decision-making framework based on rain-fed crop suitability, water scarcity, and economic benefits for determination multiple-crop rotation strategy," Agricultural Water Management, Elsevier, vol. 306(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tewodros Assefa & Manoj Jha & Manuel Reyes & Abeyou W. Worqlul, 2018. "Modeling the Impacts of Conservation Agriculture with a Drip Irrigation System on the Hydrology and Water Management in Sub-Saharan Africa," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    2. Osei, Edward & Li, Huijun, 2016. "Value of information: costs and returns of precision corn production in Livingston County, Illinois," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236184, Agricultural and Applied Economics Association.
    3. Osei, Edward & Jafri, Syed H., 2015. "In-field Spatial Variability and Profitability of Precision Nitrogen Application On Corn in Buchanan County, Iowa," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205845, Agricultural and Applied Economics Association.
    4. Ribaudo, Marc & Savage, Jeffrey, 2014. "Controlling non-additional credits from nutrient management in water quality trading programs through eligibility baseline stringency," Ecological Economics, Elsevier, vol. 105(C), pages 233-239.
    5. Cisneros, J.M. & Grau, J.B. & Antón, J.M. & de Prada, J.D. & Cantero, A. & Degioanni, A.J., 2011. "Assessing multi-criteria approaches with environmental, economic and social attributes, weights and procedures: A case study in the Pampas, Argentina," Agricultural Water Management, Elsevier, vol. 98(10), pages 1545-1556, August.
    6. Degen Lin & Hao Guo & Fang Lian & Yuan Gao & Yaojie Yue & Jing’ai Wang, 2016. "A Quantitative Method for Long-Term Water Erosion Impacts on Productivity with a Lack of Field Experiments: A Case Study in Huaihe Watershed, China," Sustainability, MDPI, vol. 8(7), pages 1-18, July.
    7. Spencer, Daniel S. & Barnes, James N. & Coatney, Kalyn T. & Parman, Bryon J. & Coble, Keith H., 2017. "Property Rights And The Economics Of Non-Point Source Water Regulations In Agriculture: A New Biophysical-Economic Methodological Approach," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252835, Southern Agricultural Economics Association.
    8. Osei, Edward & Jafri, Syed H., "undated". "Climate Change impacts on Corn and Soybean Production in Iowa," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258348, Agricultural and Applied Economics Association.
    9. Li, Runwei & Wei, Chenyang & Afroz, Mahnaz Dil & Lyu, Jun & Chen, Gang, 2021. "A GIS-based framework for local agricultural decision-making and regional crop yield simulation," Agricultural Systems, Elsevier, vol. 193(C).
    10. Osei, Edward & Jafri, Syed, 2016. "Climate Change impacts on Agricultural Production and Farm Incomes in Texas," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236053, Agricultural and Applied Economics Association.
    11. Ribaudo, Marc & Savage, Jeffrey & Aillery, Marcel P., 2014. "An Economic Assessment of Policy Options To Reduce Agricultural Pollutants in the Chesapeake Bay," Economic Research Report 171880, United States Department of Agriculture, Economic Research Service.
    12. Mark Siemers & Stephen Plotkin & Philip W. Gassman, 2014. "Interactive APEX (i_APEX) User's guide using APEX2110 and APEX0806," Center for Agricultural and Rural Development (CARD) Publications 14-tr50, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    13. Wainger, L. & Loomis, J. & Johnston, R. & Hansen, L. & Carlisle, D. & Lawrence, D. & Gollehon, N. & Duriancik, L. & Schwartz, G. & Ribaudo, M. & Gala, C., "undated". "Ecosystem Service Benefits Generated by Improved Water Quality from Conservation Practices," C-FARE Reports 260679, Council on Food, Agricultural, and Resource Economics (C-FARE).
    14. Osei, Edward & Steiner, Jean & Saleh, Ali, 2015. "Economic Viability of Beef Cattle Grazing Systems under Prolonged Drought," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205850, Agricultural and Applied Economics Association.
    15. Tsakmakis, I.D. & Kokkos, N.P. & Gikas, G.D. & Pisinaras, V. & Hatzigiannakis, E. & Arampatzis, G. & Sylaios, G.K., 2019. "Evaluation of AquaCrop model simulations of cotton growth under deficit irrigation with an emphasis on root growth and water extraction patterns," Agricultural Water Management, Elsevier, vol. 213(C), pages 419-432.
    16. Osei, Edward, 2016. "Optimal distribution of conservation practices in the Upper Washita River basin, Oklahoma," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236013, Agricultural and Applied Economics Association.
    17. Marshall, Elizabeth & Aillery, Marcel & Ribaudo, Marc & Key, Nigel & Sneeringer, Stacy & Hansen, LeRoy & Malcolm, Scott & Riddle, Anne, 2018. "Reducing Nutrient Losses From Cropland in the Mississippi/Atchafalaya River Basin: Cost Efficiency and Regional Distribution," Economic Research Report 277567, United States Department of Agriculture, Economic Research Service.
    18. Omidreza Mikaeili & Mojtaba Shourian, 2024. "Improving Evapotranspiration Estimation in SWAT-Based Hydrologic Simulation through Data Assimilation in the SEBAL Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4101-4122, September.
    19. Carlos Eduardo Quezada Lambertin, 2021. "Adaptación a los impactos del cambio climático de sistemas agrícolas basados en papa del altiplano boliviano," Documentos de trabajo 6/2021, Instituto de Investigaciones Socio-Económicas (IISEC), Universidad Católica Boliviana.
    20. Rossetto, Rudy & De Filippis, Giovanna & Triana, Federico & Ghetta, Matteo & Borsi, Iacopo & Schmid, Wolfgang, 2019. "Software tools for management of conjunctive use of surface- and ground-water in the rural environment: integration of the Farm Process and the Crop Growth Module in the FREEWAT platform," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:6822-:d:402661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.