IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i8p2191-d222134.html
   My bibliography  Save this article

VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain

Author

Listed:
  • Jorge Salas

    (School of Civil Engineering, Universitat Politècnica de València, 46022 Valencia, Spain)

  • Víctor Yepes

    (ICITECH, Universitat Politècnica de València, 46022 Valencia, Spain)

Abstract

Many-objective optimization methods have proven successful in the integration of research attributes demanded for urban vulnerability assessment models. However, these techniques suffer from the curse of the dimensionality problem, producing an excessive burden in the decision-making process by compelling decision-makers to select alternatives among a large number of candidates. In other fields, this problem has been alleviated through cluster analysis, but there is still a lack in the application of such methods for urban vulnerability assessment purposes. This work addresses this gap by a novel combination of visual analytics and cluster analysis, enabling the decision-maker to select the set of indicators best representing urban vulnerability accordingly to three criteria: expert’s preferences, goodness of fit, and robustness. Based on an assessment framework previously developed, VisualUVAM affords an evaluation of urban vulnerability in Spain at regional, provincial, and municipal scales, whose results demonstrate the effect of the governmental structure of a territory over the vulnerability of the assessed entities.

Suggested Citation

  • Jorge Salas & Víctor Yepes, 2019. "VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain," Sustainability, MDPI, vol. 11(8), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2191-:d:222134
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/8/2191/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/8/2191/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesca Moraci & Maurizio Francesco Errigo & Celestina Fazia & Gianluca Burgio & Sante Foresta, 2018. "Making Less Vulnerable Cities: Resilience as a New Paradigm of Smart Planning," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    2. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    3. Taboada, Heidi A. & Baheranwala, Fatema & Coit, David W. & Wattanapongsakorn, Naruemon, 2007. "Practical solutions for multi-objective optimization: An application to system reliability design problems," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 314-322.
    4. Vicent Penadés-Plà & Tatiana García-Segura & José V. Martí & Víctor Yepes, 2016. "A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    5. Pengjun Zhao & Ralph Chapman & Edward Randal & Philippa Howden-Chapman, 2013. "Understanding Resilient Urban Futures: A Systemic Modelling Approach," Sustainability, MDPI, vol. 5(7), pages 1-22, July.
    6. Singh, Rana Pratap & Nachtnebel, Hans Peter, 2016. "Analytical hierarchy process (AHP) application for reinforcement of hydropower strategy in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 43-58.
    7. Zio, E. & Bazzo, R., 2011. "A clustering procedure for reducing the number of representative solutions in the Pareto Front of multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 210(3), pages 624-634, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge Salas & Víctor Yepes, 2020. "Enhancing Sustainability and Resilience through Multi-Level Infrastructure Planning," IJERPH, MDPI, vol. 17(3), pages 1-22, February.
    2. Jeisson Prieto & Rafael Malagón & Jonatan Gomez & Elizabeth León, 2021. "Urban Vulnerability Assessment for Pandemic Surveillance—The COVID-19 Case in Bogotá, Colombia," Sustainability, MDPI, vol. 13(6), pages 1-13, March.
    3. Bismark Adu-Gyamfi & Rajib Shaw, 2021. "Utilizing Population Distribution Patterns for Disaster Vulnerability Assessment: Case of Foreign Residents in the Tokyo Metropolitan Area of Japan," IJERPH, MDPI, vol. 18(8), pages 1-17, April.
    4. Yuming Lin & Zhenjiang Shen, 2022. "An Innovative Index for Evaluating Urban Vulnerability on Pandemic Using LambdaMART Algorithm," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    5. Vicent Penadés-Plà & David Martínez-Muñoz & Tatiana García-Segura & Ignacio J. Navarro & Víctor Yepes, 2020. "Environmental and Social Impact Assessment of Optimized Post-Tensioned Concrete Road Bridges," Sustainability, MDPI, vol. 12(10), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge Salas & Víctor Yepes, 2020. "Enhancing Sustainability and Resilience through Multi-Level Infrastructure Planning," IJERPH, MDPI, vol. 17(3), pages 1-22, February.
    2. Madhusudhan Adhikari & Laxman Prasad Ghimire & Yeonbae Kim & Prakash Aryal & Sundar Bahadur Khadka, 2020. "Identification and Analysis of Barriers against Electric Vehicle Use," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    3. Kurek, Katarzyna A. & Heijman, Wim & van Ophem, Johan & Gędek, Stanisław & Strojny, Jacek, 2020. "The impact of geothermal resources on the competitiveness of municipalities: evidence from Poland," Renewable Energy, Elsevier, vol. 151(C), pages 1230-1239.
    4. Dolatshahi-Zand, Ali & Khalili-Damghani, Kaveh, 2015. "Design of SCADA water resource management control center by a bi-objective redundancy allocation problem and particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 11-21.
    5. Khalili-Damghani, Kaveh & Amiri, Maghsoud, 2012. "Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 35-44.
    6. Ghimire, Laxman Prasad & Kim, Yeonbae, 2018. "An analysis on barriers to renewable energy development in the context of Nepal using AHP," Renewable Energy, Elsevier, vol. 129(PA), pages 446-456.
    7. Petchrompo, Sanyapong & Wannakrairot, Anupong & Parlikad, Ajith Kumar, 2022. "Pruning Pareto optimal solutions for multi-objective portfolio asset management," European Journal of Operational Research, Elsevier, vol. 297(1), pages 203-220.
    8. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    9. Lu, Qing-Long & Qurashi, Moeid & Antoniou, Constantinos, 2023. "Simulation-based policy analysis: The case of urban speed limits," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    10. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    11. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    12. D’Inverno, Giovanna & Carosi, Laura & Romano, Giulia & Guerrini, Andrea, 2018. "Water pollution in wastewater treatment plants: An efficiency analysis with undesirable output," European Journal of Operational Research, Elsevier, vol. 269(1), pages 24-34.
    13. Nermin Kişi, 2019. "A Strategic Approach to Sustainable Tourism Development Using the A’WOT Hybrid Method: A Case Study of Zonguldak, Turkey," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    14. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    15. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    16. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    17. Abareshi, Maryam & Zaferanieh, Mehdi, 2019. "A bi-level capacitated P-median facility location problem with the most likely allocation solution," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 1-20.
    18. Datu Buyung Agusdinata & Wenjuan Liu & Sinta Sulistyo & Philippe LeBillon & Je'anne Wegner, 2023. "Evaluating sustainability impacts of critical mineral extractions: Integration of life cycle sustainability assessment and SDGs frameworks," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 746-759, June.
    19. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    20. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2191-:d:222134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.