IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i2p498-d131701.html
   My bibliography  Save this article

Decomposition of Fertilizer Use Intensity and Its Environmental Risk in China’s Grain Production Process

Author

Listed:
  • Jie Cai

    (College of Economics and Management, Northwest A & F University, Yangling 712100, China)

  • Xianli Xia

    (College of Economics and Management, Northwest A & F University, Yangling 712100, China)

  • Haibin Chen

    (College of Economics and Management, Northwest A & F University, Yangling 712100, China)

  • Ting Wang

    (International Education College, Kedagaoxin University, Xi’an 710109, China)

  • Huili Zhang

    (College of Economics and Management, Northwest A & F University, Yangling 712100, China)

Abstract

In order to fully explore the fertilizer use intensity and its potential threats to the ecological environment, this paper has studied the decomposition of fertilizer use intensity and its environmental risk in China’s grain production. Based on the statistical data collected from 10 provinces during 2004–2015 in China’s grain producing areas, this paper has analyzed the effect of fertilizer use intensity from a regional perspective. The environmental risk assessment model considers some factors such as the fertilizer application safety thresholds use efficiency, multiple cropping index, and environmental impact weight. The fertilizer application safety thresholds are calculated on the target output of local food crops. The results show that: (1) during 2004–2015, the fertilizer use intensity shows an increasing trend in China’s grain producing areas, and the intensity is significantly higher than the upper limit of the international safety fertilization; (2) the cumulative contribution rate of the increase of fertilizer use intensity caused by regional fertilizer use efficiency and grain planting structure adjustment are 57.03% and 1.81% respectively; (3) in 2015, China’s grain producing areas’ environmental risk index of phosphorus and potash was low, with the values in these two provinces being quite different and indicating the characteristics of aggregation and distribution. Therefore, the Chinese government should unswervingly encourage the application of some technology that could save fertilizer and increase efficiency, establish environmental risk monitoring and control systems, and improve relevant policies and regulations.

Suggested Citation

  • Jie Cai & Xianli Xia & Haibin Chen & Ting Wang & Huili Zhang, 2018. "Decomposition of Fertilizer Use Intensity and Its Environmental Risk in China’s Grain Production Process," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:498-:d:131701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/2/498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/2/498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Williamson, James M., 2011. "The Role of Information and Prices in the Nitrogen Fertilizer Management Decision: New Evidence from the Agricultural Resource Management Survey," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 36(3), pages 1-21.
    2. E. Phimister & D. Roberts, 2006. "The Effect of Off-farm Work on the Intensity of Agricultural Production," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 34(4), pages 493-515, August.
    3. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huimin Qu & Jie Han, 2021. "Driving Factors for the Change of Fertilizer Use Intensity in China and Its Six Major Regions," International Business Research, Canadian Center of Science and Education, vol. 14(10), pages 1-71, October.
    2. Yuanzhi Guo & Jieyong Wang, 2021. "Spatiotemporal Changes of Chemical Fertilizer Application and Its Environmental Risks in China from 2000 to 2019," IJERPH, MDPI, vol. 18(22), pages 1-14, November.
    3. Zhilu Sun & Xiande Li, 2021. "Technical Efficiency of Chemical Fertilizer Use and Its Influencing Factors in China’s Rice Production," Sustainability, MDPI, vol. 13(3), pages 1-18, January.
    4. Helena Wehmeyer & Annalyn H. de Guia & Melanie Connor, 2020. "Reduction of Fertilizer Use in South China—Impacts and Implications on Smallholder Rice Farmers," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
    5. Adityawarman Adil & Rizal Syarief & Widiatmaka & Mukhamad Najib, 2022. "Stakeholder Analysis and Prioritization of Sustainable Organic Farming Management: A Case Study of Bogor, Indonesia," Sustainability, MDPI, vol. 14(24), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Jiang & Zhihui Li, 2016. "Urbanization and the Change of Fertilizer Use Intensity for Agricultural Production in Henan Province," Sustainability, MDPI, vol. 8(2), pages 1-12, February.
    2. Elisa Morri & Riccardo Santolini, 2021. "Ecosystem Services Valuation for the Sustainable Land Use Management by Nature-Based Solution (NbS) in the Common Agricultural Policy Actions: A Case Study on the Foglia River Basin (Marche Region, It," Land, MDPI, vol. 11(1), pages 1-23, December.
    3. Gedikoglu, Haluk & McCann, Laura M.J. & Artz, Georgeanne M., 2011. "Off-Farm Employment Effects on Adoption of Nutrient Management Practices," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 40(2), pages 1-14, August.
    4. Katarina Arvidsson Segerkvist & Helena Hansson & Ulf Sonesson & Stefan Gunnarsson, 2021. "A Systematic Mapping of Current Literature on Sustainability at Farm-Level in Beef and Lamb Meat Production," Sustainability, MDPI, vol. 13(5), pages 1-14, February.
    5. Hualin Xie & Yingqian Huang & Qianru Chen & Yanwei Zhang & Qing Wu, 2019. "Prospects for Agricultural Sustainable Intensification: A Review of Research," Land, MDPI, vol. 8(11), pages 1-27, October.
    6. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    7. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    8. Diriba Shiferaw G., 2017. "Water-Nutrients Interaction: Exploring the Effects of Water as a Central Role for Availability & Use Efficiency of Nutrients by Shallow Rooted Vegetable Crops - A Review," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 3(10), pages 78-93, 10-2017.
    9. Sheng Gong & Jason.S. Bergtold & Elizabeth Yeager, 2021. "Assessing the joint adoption and complementarity between in-field conservation practices of Kansas farmers," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 9(1), pages 1-24, December.
    10. Seufert, Verena & Ramankutty, Navin & Mayerhofer, Tabea, 2017. "What is this thing called organic? – How organic farming is codified in regulations," Food Policy, Elsevier, vol. 68(C), pages 10-20.
    11. Kataki, Sampriti & West, Helen & Clarke, Michèle & Baruah, D.C., 2016. "Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 142-156.
    12. Alexander D. Chapman & Stephen E. Darby & Hoàng M. Hồng & Emma L. Tompkins & Tri P. D. Van, 2016. "Adaptation and development trade-offs: fluvial sediment deposition and the sustainability of rice-cropping in An Giang Province, Mekong Delta," Climatic Change, Springer, vol. 137(3), pages 593-608, August.
    13. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    14. Chen, Chien-Ming & van Dalen, Jan, 2010. "Measuring dynamic efficiency: Theories and an integrated methodology," European Journal of Operational Research, Elsevier, vol. 203(3), pages 749-760, June.
    15. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    16. Teklewold, Hailemariam & Kassie, Menale & Shiferaw, Bekele & Köhlin, Gunnar, 2013. "Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor," Ecological Economics, Elsevier, vol. 93(C), pages 85-93.
    17. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    18. Horacio Augstburger & Fabian Käser & Stephan Rist, 2019. "Assessing Food Systems and Their Impact on Common Pool Resources and Resilience," Land, MDPI, vol. 8(4), pages 1-25, April.
    19. Samuel I. Haruna & Nsalambi V. Nkongolo, 2020. "Influence of Cover Crop, Tillage, and Crop Rotation Management on Soil Nutrients," Agriculture, MDPI, vol. 10(6), pages 1-14, June.
    20. Aditi Sengupta & Priyanka Kushwaha & Antonia Jim & Peter A. Troch & Raina Maier, 2020. "New Soil, Old Plants, and Ubiquitous Microbes: Evaluating the Potential of Incipient Basaltic Soil to Support Native Plant Growth and Influence Belowground Soil Microbial Community Composition," Sustainability, MDPI, vol. 12(10), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:498-:d:131701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.