IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v9y2020i9p102-d404791.html
   My bibliography  Save this article

Assessment of the Renewable Energy Sector Performance Using Selected Indicators in European Union Countries

Author

Listed:
  • Dominika Čeryová

    (Department of Economics, Faculty of Economics and Management, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia)

  • Tatiana Bullová

    (Department of Economics, Faculty of Economics and Management, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia)

  • Natália Turčeková

    (Department of Economics, Faculty of Economics and Management, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia)

  • Izabela Adamičková

    (Department of Economics, Faculty of Economics and Management, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia)

  • Danka Moravčíková

    (Department of Economics, Faculty of Economics and Management, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia)

  • Peter Bielik

    (Department of Economics, Faculty of Economics and Management, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia)

Abstract

Renewable energy is the key pillar and plays an important role in the energy systems of European Union member states and in mitigating climate change. It is supporting the transition towards a greener, resource-efficient and more competitive, low-carbon European Union economy. Above-average, average and below-average values of monitored indicators in member states of the European Union in 2009–2016 were ascertained by using principal component analysis. Monitored indicators of the renewable energy sector included electricity generation, electricity capacity, investments of public financial institutions, number of employees and turnover achieved from the economic activities related to production, distribution, installation, operation and maintenance of equipment (all of them per capita). Based on the achieved results, we can state that the situation changed during the period under review. Member states have moved between above-average, average and below-average levels of renewable energy indicators. However, a lack of change in the indicators was recorded in some member states throughout the eight-year period (Finland, France, Ireland, Germany, Austria and Spain did not move significantly). Renewable energy sources (hydro, wind, solar, geothermal and energy from biomass) were evaluated as a whole due to different natural, economic and legislative conditions of European Union countries.

Suggested Citation

  • Dominika Čeryová & Tatiana Bullová & Natália Turčeková & Izabela Adamičková & Danka Moravčíková & Peter Bielik, 2020. "Assessment of the Renewable Energy Sector Performance Using Selected Indicators in European Union Countries," Resources, MDPI, vol. 9(9), pages 1-15, August.
  • Handle: RePEc:gam:jresou:v:9:y:2020:i:9:p:102-:d:404791
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/9/9/102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/9/9/102/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abolhosseini, Shahrouz & Heshmati, Almas, 2014. "The main support mechanisms to finance renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 876-885.
    2. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    3. Stavropoulos, S. & Burger, M.J., 2020. "Modelling strategy and net employment effects of renewable energy and energy efficiency: A meta-regression," Energy Policy, Elsevier, vol. 136(C).
    4. Ortega, Margarita & Río, Pablo del & Ruiz, Pablo & Nijs, Wouter & Politis, Savvas, 2020. "Analysing the influence of trade, technology learning and policy on the employment prospects of wind and solar energy deployment: The EU case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    5. Mittal, Anuj & Krejci, Caroline C. & Dorneich, Michael C., 2019. "An agent-based approach to designing residential renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 1008-1020.
    6. Ram Avtar & Netrananda Sahu & Ashwani Kumar Aggarwal & Shamik Chakraborty & Ali Kharrazi & Ali P. Yunus & Jie Dou & Tonni Agustiono Kurniawan, 2019. "Exploring Renewable Energy Resources Using Remote Sensing and GIS—A Review," Resources, MDPI, vol. 8(3), pages 1-23, August.
    7. Ram, Manish & Aghahosseini, Arman & Breyer, Christian, 2020. "Job creation during the global energy transition towards 100% renewable power system by 2050," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    8. Tadeusz Skoczkowski & Sławomir Bielecki & Joanna Wojtyńska, 2019. "Long-Term Projection of Renewable Energy Technology Diffusion," Energies, MDPI, vol. 12(22), pages 1-24, November.
    9. Genovaitė Liobikienė & Mindaugas Butkus & Kristina Matuzevičiūtė, 2019. "The Contribution of Energy Taxes to Climate Change Policy in the European Union (EU)," Resources, MDPI, vol. 8(2), pages 1-23, April.
    10. Massimiliano Agovino & Antonio Garofalo & Antonio Angelo Romano & Giuseppe Scandurra, 2018. "Explanatory analysis of the key factors in an energy sustainability index," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(6), pages 2597-2632, November.
    11. Zalzar, Shaghayegh & Bompard, Ettore & Purvins, Arturs & Masera, Marcelo, 2020. "The impacts of an integrated European adjustment market for electricity under high share of renewables," Energy Policy, Elsevier, vol. 136(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bastida-Molina, Paula & Hurtado-Pérez, Elías & Moros Gómez, María Cristina & Cárcel-Carrasco, Javier & Pérez-Navarro, Ángel, 2022. "Energy sustainability evolution in the Mediterranean countries and synergies from a global energy scenario for the area," Energy, Elsevier, vol. 252(C).
    2. Wątróbski, Jarosław & Bączkiewicz, Aleksandra & Sałabun, Wojciech, 2022. "New multi-criteria method for evaluation of sustainable RES management," Applied Energy, Elsevier, vol. 324(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saboori, Behnaz & Gholipour, Hassan F. & Rasoulinezhad, Ehsan & Ranjbar, Omid, 2022. "Renewable energy sources and unemployment rate: Evidence from the US states," Energy Policy, Elsevier, vol. 168(C).
    2. Assoumou, Edi & McIsaac, Florent, 2022. "Côte d'Ivoire's electricity challenge in 2050: Reconciling economic development and climate commitments," Energy Policy, Elsevier, vol. 160(C).
    3. Zhang, Shuo & Yu, Yadong & Kharrazi, Ali & Ma, Tieju, 2023. "How would sustainable transformations in the electricity sector of megacities impact employment levels? A case study of Beijing," Energy, Elsevier, vol. 270(C).
    4. Ram, Manish & Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Job creation during a climate compliant global energy transition across the power, heat, transport, and desalination sectors by 2050," Energy, Elsevier, vol. 238(PA).
    5. Bolson, Natanael & Yutkin, Maxim & Rees, William & Patzek, Tadeusz, 2022. "Resilience rankings and trajectories of world's countries," Ecological Economics, Elsevier, vol. 195(C).
    6. Mayfield, Erin & Jenkins, Jesse & Larson, Eric & Greig, Chris, 2023. "Labor pathways to achieve net-zero emissions in the United States by mid-century," Energy Policy, Elsevier, vol. 177(C).
    7. Geng, Jiang-Bo & Du, Ya-Juan & Ji, Qiang & Zhang, Dayong, 2021. "Modeling return and volatility spillover networks of global new energy companies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Agnieszka Operacz, 2021. "Possibility of Hydropower Development: A Simple-to-Use Index," Energies, MDPI, vol. 14(10), pages 1-19, May.
    9. Gnansounou, Edgard, 2011. "Assessing the sustainability of biofuels: A logic-based model," Energy, Elsevier, vol. 36(4), pages 2089-2096.
    10. Cho, Young Sang & Kim, Jeom Han & Hong, Seong Uk & Kim, Yuri, 2012. "LCA application in the optimum design of high rise steel structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3146-3153.
    11. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    12. Poinssot, Ch. & Bourg, S. & Ouvrier, N. & Combernoux, N. & Rostaing, C. & Vargas-Gonzalez, M. & Bruno, J., 2014. "Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles," Energy, Elsevier, vol. 69(C), pages 199-211.
    13. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Fernando Rueda-Martinez & Alberto-Jesus Perea-Moreno, 2020. "Zapote Seed ( Pouteria mammosa L. ) Valorization for Thermal Energy Generation in Tropical Climates," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    14. Karatayev, Marat & Clarke, Michèle L., 2016. "A review of current energy systems and green energy potential in Kazakhstan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 491-504.
    15. Yang, Jing & Zhang, Zhiyong & Hong, Ming & Yang, Mingwan & Chen, Jiayu, 2020. "An oligarchy game model for the mobile waste heat recovery energy supply chain," Energy, Elsevier, vol. 210(C).
    16. Oikonomou, V. & Flamos, A. & Gargiulo, M. & Giannakidis, G. & Kanudia, A. & Spijker, E. & Grafakos, S., 2011. "Linking least-cost energy system costs models with MCA: An assessment of the EU renewable energy targets and supporting policies," Energy Policy, Elsevier, vol. 39(5), pages 2786-2799, May.
    17. L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.
    18. Majewski, Peter & Al-shammari, Weam & Dudley, Michael & Jit, Joytishna & Lee, Sang-Heon & Myoung-Kug, Kim & Sung-Jim, Kim, 2021. "Recycling of solar PV panels- product stewardship and regulatory approaches," Energy Policy, Elsevier, vol. 149(C).
    19. Hassan, Rakibul & Das, Barun K. & Hasan, Mahmudul, 2022. "Integrated off-grid hybrid renewable energy system optimization based on economic, environmental, and social indicators for sustainable development," Energy, Elsevier, vol. 250(C).
    20. Liu, Gang & Rasul, M.G. & Amanullah, M.T.O. & Khan, M.M.K., 2012. "Techno-economic simulation and optimization of residential grid-connected PV system for the Queensland climate," Renewable Energy, Elsevier, vol. 45(C), pages 146-155.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:9:y:2020:i:9:p:102-:d:404791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.