IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i6p1015-d374468.html
   My bibliography  Save this article

Eliminating Rank Reversal Problem Using a New Multi-Attribute Model—The RAFSI Method

Author

Listed:
  • Mališa Žižović

    (Faculty of Technical Sciences in Čačak, University of Kragujevac, Svetog Save 65, 32102 Čačak, Serbia)

  • Dragan Pamučar

    (Department of Logistics, Military academy, University of Defence in Belgrade, Pavla Jurišića Šturma 33, 11000 Belgrade, Serbia)

  • Miloljub Albijanić

    (Faculty of Economics, Finance and Administration, Metropolitan University, 11000 Belgrade, Serbia)

  • Prasenjit Chatterjee

    (Department of Mechanical Engineering, MCKV Institute of Engineering, West Bengal, Howrah 711204, India)

  • Ivan Pribićević

    (Simplify Outsourcing d.o.o. Belgrade, 11000 Belgrade, Serbia)

Abstract

Multi-attribute decision-making (MADM) methods represent reliable ways to solve real-world problems for various applications by providing rational and logical solutions. In reaching such a goal, it is expected that MADM methods would eliminate inconsistencies like rank reversal issues in a given solution. In this paper, an endeavor is taken to put forward a new MADM method, called RAFSI (Ranking of Alternatives through Functional mapping of criterion sub-intervals into a Single Interval), which successfully eliminates the rank reversal problem. The developed RAFSI method has three major advantages that recommend it for further use: (i) its simple algorithm helps in solving complex real-world problems, (ii) RAFSI method has a new approach for data normalization, which transfers data from the starting decision-making matrix into any interval, suitable for making rational decisions, (iii) mathematical formulation of RAFSI method eliminates the rank reversal problem, which is one of the most significant shortcomings of existing MADM methods. A real-time case study that shows the advantages of RAFSI method is presented. Additional comprehensive analysis, including a comparison with other three traditional MADM methods that use different ways for data normalization and testing the resistance of RAFSI method and other MADM methods to rank the reversal problem, is also carried out.

Suggested Citation

  • Mališa Žižović & Dragan Pamučar & Miloljub Albijanić & Prasenjit Chatterjee & Ivan Pribićević, 2020. "Eliminating Rank Reversal Problem Using a New Multi-Attribute Model—The RAFSI Method," Mathematics, MDPI, vol. 8(6), pages 1-16, June.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:1015-:d:374468
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/6/1015/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/6/1015/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huiyun Lu & Shaojun Jiang & Wenyan Song & Xinguo Ming, 2018. "A Rough Multi-Criteria Decision-Making Approach for Sustainable Supplier Selection under Vague Environment," Sustainability, MDPI, vol. 10(8), pages 1-20, July.
    2. P Leskinen & J Kangas, 2005. "Rank reversals in multi-criteria decision analysis with statistical modelling of ratio-scale pairwise comparisons," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(7), pages 855-861, July.
    3. Mehdi KESHAVARZ GHORABAEE & Edmundas Kazimieras ZAVADSKAS & Zenonas TURSKIS & Jurgita ANTUCHEVICIENE, 2016. "A New Combinative Distance-Based Assessment(Codas) Method For Multi-Criteria Decision-Making," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(3), pages 25-44.
    4. Xiongyong Zhou & Zhiduan Xu, 2018. "An Integrated Sustainable Supplier Selection Approach Based on Hybrid Information Aggregation," Sustainability, MDPI, vol. 10(7), pages 1-49, July.
    5. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haseli, Gholamreza & Yaran Ögel, İlkin & Ecer, Fatih & Hajiaghaei-Keshteli, Mostafa, 2023. "Luxury in female technology (FemTech): Selection of smart jewelry for women through BCM-MARCOS group decision-making framework with fuzzy ZE-numbers," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    2. Sanjib Biswas & Dragan Pamucar, 2023. "A modified EDAS model for comparison of mobile wallet service providers in India," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-31, December.
    3. Ecer, Fatih & Pamucar, Dragan, 2022. "A novel LOPCOW‐DOBI multi‐criteria sustainability performance assessment methodology: An application in developing country banking sector," Omega, Elsevier, vol. 112(C).
    4. Deveci, Muhammet & Pamucar, Dragan & Oguz, Elif, 2022. "Floating photovoltaic site selection using fuzzy rough numbers based LAAW and RAFSI model," Applied Energy, Elsevier, vol. 324(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Dragan Pamučar & Ibrahim Badi & Korica Sanja & Radojko Obradović, 2018. "A Novel Approach for the Selection of Power-Generation Technology Using a Linguistic Neutrosophic CODAS Method: A Case Study in Libya," Energies, MDPI, vol. 11(9), pages 1-25, September.
    3. Patchara Phochanikorn & Chunqiao Tan, 2019. "A New Extension to a Multi-Criteria Decision-Making Model for Sustainable Supplier Selection under an Intuitionistic Fuzzy Environment," Sustainability, MDPI, vol. 11(19), pages 1-24, September.
    4. Mladen Krstić & Giulio Paolo Agnusdei & Pier Paolo Miglietta & Snežana Tadić & Violeta Roso, 2022. "Applicability of Industry 4.0 Technologies in the Reverse Logistics: A Circular Economy Approach Based on COmprehensive Distance Based RAnking (COBRA) Method," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    5. Morteza Yazdani & Dragan Pamucar & Prasenjit Chatterjee & Ali Ebadi Torkayesh, 2022. "“A multi-tier sustainable food supplier selection model under uncertainty”," Operations Management Research, Springer, vol. 15(1), pages 116-145, June.
    6. Haolun Wang, 2022. "Sustainable Circular Supplier Selection in the Power Battery Industry Using a Linguistic T-Spherical Fuzzy MAGDM Model Based on the Improved ARAS Method," Sustainability, MDPI, vol. 14(13), pages 1-26, June.
    7. N. Aktaş & N. Demirel, 2021. "A hybrid framework for evaluating corporate sustainability using multi-criteria decision making," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 15591-15618, October.
    8. Yongming Song & Jun Hu, 2017. "Vector similarity measures of hesitant fuzzy linguistic term sets and their applications," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.
    9. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    10. Zheng, Guozhong & Wang, Xiao, 2020. "The comprehensive evaluation of renewable energy system schemes in tourist resorts based on VIKOR method," Energy, Elsevier, vol. 193(C).
    11. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    12. Milad Zamanifar & Seyed Mohammad Seyedhoseyni, 2017. "Recovery planning model for roadways network after natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 699-716, June.
    13. Pedro Ponce & Citlaly Pérez & Aminah Robinson Fayek & Arturo Molina, 2022. "Solar Energy Implementation in Manufacturing Industry Using Multi-Criteria Decision-Making Fuzzy TOPSIS and S4 Framework," Energies, MDPI, vol. 15(23), pages 1-19, November.
    14. Mohit Jain & Gunjan Soni & Deepak Verma & Rajendra Baraiya & Bharti Ramtiyal, 2023. "Selection of Technology Acceptance Model for Adoption of Industry 4.0 Technologies in Agri-Fresh Supply Chain," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    15. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    16. Davis-Sramek, Beth & Robinson, Jessica L. & Darby, Jessica L. & Thomas, Rodney W., 2020. "Exploring the differential roles of environmental and social sustainability in carrier selection decisions," International Journal of Production Economics, Elsevier, vol. 227(C).
    17. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    18. Deb, Madhujit & Debbarma, Bishop & Majumder, Arindam & Banerjee, Rahul, 2016. "Performance –emission optimization of a diesel-hydrogen dual fuel operation: A NSGA II coupled TOPSIS MADM approach," Energy, Elsevier, vol. 117(P1), pages 281-290.
    19. Kuang-Hua Hu & Wei Jianguo & Gwo-Hshiung Tzeng, 2017. "Risk Factor Assessment Improvement for China’s Cloud Computing Auditing Using a New Hybrid MADM Model," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 737-777, May.
    20. Fernando Rojas & Peter Wanke & Víctor Leiva & Mauricio Huerta & Carlos Martin-Barreiro, 2022. "Modeling Inventory Cost Savings and Supply Chain Success Factors: A Hybrid Robust Compromise Multi-Criteria Approach," Mathematics, MDPI, vol. 10(16), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:1015-:d:374468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.