IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2757-d879457.html
   My bibliography  Save this article

Forecasting Crude Oil Future Volatilities with a Threshold Zero-Drift GARCH Model

Author

Listed:
  • Tong Liu

    (School of General Education, Guizhou University of Commerce, Guiyang 550014, China)

  • Yanlin Shi

    (Department of Actuarial Studies and Business Analytics, Macquarie University, Sydney, NSW 2109, Australia)

Abstract

The recent price crash of the New York Mercantile Exchange (NYMEX) crude oil futures contract, which occurred on 20 April 2020, has caused history-writing movements of relative prices. For instance, the West Texas Intermediate (WTI) experienced a negative price. Explosive heteroskedasticity is also evidenced in associated products, such as the Intercontinental Exchange Brent (BRE) and Shanghai International Energy Exchange (INE) crude oil futures. Those movements indicate potential non-stationarity in the conditional volatility with an asymmetric influence of negative shocks. To incorporate those features, which cannot be accommodated by the existing generalized autoregressive conditional heteroskedasticity (GARCH) models, we propose a threshold zero-drift GARCH (TZD-GARCH) model. Our empirical studies of the daily INE returns from March 2018 to April 2020 demonstrate the usefulness of the TZD-GARCH model in understanding the empirical features and in precisely forecasting the volatility of INE. Robust checks based on BRE and WTI over various periods further lead to highly consistent results. Applications of news impact curves and Value-at-Risk (VaR) analyses indicate the usefulness of the proposed TZD-GARCH model in practice. Implications include more effectively hedging risks of crude oil futures for policymakers and market participants, as well as the potential market inefficiency of INE relative to WTI and BRE.

Suggested Citation

  • Tong Liu & Yanlin Shi, 2022. "Forecasting Crude Oil Future Volatilities with a Threshold Zero-Drift GARCH Model," Mathematics, MDPI, vol. 10(15), pages 1-20, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2757-:d:879457
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2757/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2757/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marchese, Malvina & Kyriakou, Ioannis & Tamvakis, Michael & Di Iorio, Francesca, 2020. "Forecasting crude oil and refined products volatilities and correlations: New evidence from fractionally integrated multivariate GARCH models," Energy Economics, Elsevier, vol. 88(C).
    2. Lv, Fei & Yang, Chen & Fang, Libing, 2020. "Do the crude oil futures of the Shanghai International Energy Exchange improve asset allocation of Chinese petrochemical-related stocks?," International Review of Financial Analysis, Elsevier, vol. 71(C).
    3. W. K. Li & T. K. Mak, 1994. "On The Squared Residual Autocorrelations In Non‐Linear Time Series With Conditional Heteroskedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(6), pages 627-636, November.
    4. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    5. Nomikos, Nikos & Andriosopoulos, Kostas, 2012. "Modelling energy spot prices: Empirical evidence from NYMEX," Energy Economics, Elsevier, vol. 34(4), pages 1153-1169.
    6. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    7. Hou, Yang & Li, Steven & Wen, Fenghua, 2019. "Time-varying volatility spillover between Chinese fuel oil and stock index futures markets based on a DCC-GARCH model with a semi-nonparametric approach," Energy Economics, Elsevier, vol. 83(C), pages 119-143.
    8. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Li, Dong & Zhang, Xingfa & Zhu, Ke & Ling, Shiqing, 2018. "The ZD-GARCH model: A new way to study heteroscedasticity," Journal of Econometrics, Elsevier, vol. 202(1), pages 1-17.
    11. Basher, Syed Abul & Sadorsky, Perry, 2016. "Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH," Energy Economics, Elsevier, vol. 54(C), pages 235-247.
    12. Sadorsky, Perry, 2014. "Modeling volatility and correlations between emerging market stock prices and the prices of copper, oil and wheat," Energy Economics, Elsevier, vol. 43(C), pages 72-81.
    13. Robert F. Engle, 2011. "Long-Term Skewness and Systemic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 9(3), pages 437-468, Summer.
    14. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    15. Filip Žikeš & Jozef Baruník, 2015. "Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 14(1), pages 185-226.
    16. van Eyden, Reneé & Difeto, Mamothoana & Gupta, Rangan & Wohar, Mark E., 2019. "Oil price volatility and economic growth: Evidence from advanced economies using more than a century’s data," Applied Energy, Elsevier, vol. 233, pages 612-621.
    17. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    18. Georgios Bampinas & Theodore Panagiotidis, 2017. "Oil and stock markets before and after financial crises: A local Gaussian correlation approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(12), pages 1179-1204, December.
    19. Christian Francq & Jean‐Michel Zakoïan, 2012. "Strict Stationarity Testing and Estimation of Explosive and Stationary Generalized Autoregressive Conditional Heteroscedasticity Models," Econometrica, Econometric Society, vol. 80(2), pages 821-861, March.
    20. Hasbrouck, Joel, 1995. "One Security, Many Markets: Determining the Contributions to Price Discovery," Journal of Finance, American Finance Association, vol. 50(4), pages 1175-1199, September.
    21. Lin, Yu & Xiao, Yang & Li, Fuxing, 2020. "Forecasting crude oil price volatility via a HM-EGARCH model," Energy Economics, Elsevier, vol. 87(C).
    22. Yang, Dennis & Zhang, Qiang, 2000. "Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices," The Journal of Business, University of Chicago Press, vol. 73(3), pages 477-491, July.
    23. Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
    24. Hou, Aijun & Suardi, Sandy, 2012. "A nonparametric GARCH model of crude oil price return volatility," Energy Economics, Elsevier, vol. 34(2), pages 618-626.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    2. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    3. Aguilar, Mike & Hill, Jonathan B., 2015. "Robust score and portmanteau tests of volatility spillover," Journal of Econometrics, Elsevier, vol. 184(1), pages 37-61.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Kim, Jong-Min & Jung, Hojin, 2017. "Can asymmetric conditional volatility imply asymmetric tail dependence?," Economic Modelling, Elsevier, vol. 64(C), pages 409-418.
    6. Antonakakis, Nikolaos & Cunado, Juncal & Filis, George & Gabauer, David & de Gracia, Fernando Perez, 2020. "Oil and asset classes implied volatilities: Investment strategies and hedging effectiveness," Energy Economics, Elsevier, vol. 91(C).
    7. Stelios Arvanitis & Antonis Demos, 2004. "Time Dependence and Moments of a Family of Time‐Varying Parameter Garch in Mean Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(1), pages 1-25, January.
    8. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    9. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    10. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    11. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
    12. Shen, Zhiwei & Ritter, Matthias, 2016. "Forecasting volatility of wind power production," Applied Energy, Elsevier, vol. 176(C), pages 295-308.
    13. Li, Ming-Yuan Leon, 2008. "Clarifying the dynamics of the relationship between option and stock markets using the threshold vector error correction model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 511-520.
    14. Dennis Kristensen, 2009. "On stationarity and ergodicity of the bilinear model with applications to GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 125-144, January.
    15. Y. K. Tse, 2002. "Residual-based diagnostics for conditional heteroscedasticity models," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 358-374, June.
    16. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    17. Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
    18. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    19. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911.
    20. Raúl De Jesús Gutiérrez & Reyna Vergara González & Miguel A. Díaz Carreño, 2015. "Predicción de la volatilidad en el mercado del petróleo mexicano ante la presencia de efectos asimétricos," Revista Cuadernos de Economia, Universidad Nacional de Colombia, FCE, CID, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2757-:d:879457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.