IDEAS home Printed from
   My bibliography  Save this article

Strict Stationarity Testing and Estimation of Explosive and Stationary Generalized Autoregressive Conditional Heteroscedasticity Models


  • Christian Francq
  • Jean‐Michel Zakoïan


No abstract is available for this item.

Suggested Citation

  • Christian Francq & Jean‐Michel Zakoïan, 2012. "Strict Stationarity Testing and Estimation of Explosive and Stationary Generalized Autoregressive Conditional Heteroscedasticity Models," Econometrica, Econometric Society, vol. 80(2), pages 821-861, March.
  • Handle: RePEc:ecm:emetrp:v:80:y:2012:i:2:p:821-861
    DOI: ECTA9405

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2017. "Quasi-maximum likelihood estimation and bootstrap inference in fractional time series models with heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 198(1), pages 165-188.
    2. Li, Dong & Ling, Shiqing & Zhu, Ke, 2016. "ZD-GARCH model: a new way to study heteroscedasticity," MPRA Paper 68621, University Library of Munich, Germany.
    3. Tao, Yubo & Phillips, Peter C.B. & Yu, Jun, 2017. "Random Coefficient Continuous Systems: Testing for Extreme Sample Path Behaviour," Economics and Statistics Working Papers 18-2017, Singapore Management University, School of Economics.
    4. Monica Billio & Maddalena Cavicchioli, 2013. "Markov Switching Models for Volatility: Filtering, Approximation and Duality," Working Papers 2013:24, Department of Economics, University of Venice "Ca' Foscari".
    5. Min Chen & Dong Li & Shiqing Ling, 2014. "Non-Stationarity And Quasi-Maximum Likelihood Estimation On A Double Autoregressive Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(3), pages 189-202, May.
    6. Wang, Hui & Pan, Jiazhu, 2014. "Normal mixture quasi maximum likelihood estimation for non-stationary TGARCH(1,1) models," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 117-123.
    7. Rasmus Søndergaard Pedersen & Anders Rahbek, 2015. "Nonstationary ARCH and GARCH with t-distributed Innovations," CREATES Research Papers 2015-27, Department of Economics and Business Economics, Aarhus University.
    8. repec:eee:ecolet:v:161:y:2017:i:c:p:135-137 is not listed on IDEAS
    9. Hafner, Christian M. & Preminger, Arie, 2015. "An ARCH model without intercept," Economics Letters, Elsevier, vol. 129(C), pages 13-17.
    10. repec:eee:econom:v:202:y:2018:i:1:p:1-17 is not listed on IDEAS
    11. Delaigle, Aurore & Meister, Alexander & Rombouts, Jeroen, 2016. "Root-T consistent density estimation in GARCH models," Journal of Econometrics, Elsevier, vol. 192(1), pages 55-63.
    12. Li, Dong & Li, Muyi & Wu, Wuqing, 2014. "On dynamics of volatilities in nonstationary GARCH models," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 86-90.
    13. Maddalena Cavicchioli, 2013. "On asymptotic properties of the QLM estimators for GARCH models," Economics Bulletin, AccessEcon, vol. 33(2), pages 959-966.
    14. Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2016. "Nonstationary GARCH with t-distributed innovations," Economics Letters, Elsevier, vol. 138(C), pages 19-21.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:80:y:2012:i:2:p:821-861. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.