IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i13p2277-d851418.html
   My bibliography  Save this article

An Exploratory DEA and Machine Learning Framework for the Evaluation and Analysis of Sustainability Composite Indicators in the EU

Author

Listed:
  • Georgios Tsaples

    (Department of Business Administration, University of Macedonia, Egnatia Str. 156, 54636 Thessaloniki, Greece)

  • Jason Papathanasiou

    (Department of Business Administration, University of Macedonia, Egnatia Str. 156, 54636 Thessaloniki, Greece)

  • Andreas C. Georgiou

    (Quantitative Methods and Decision Analysis Lab, Department of Business Administration, University of Macedonia, Egnatia Str. 156, 54636 Thessaloniki, Greece)

Abstract

One method that has been proposed for the measurement of sustainability is Data Envelopment Analysis (DEA). Despite its advantages, the method has limitations: First, the efficiency of Decision-Making Units is calculated with weights that are favorable to themselves, which might be unrealistic, and second, it cannot account for different perceptions of sustainability; since there is not an established and unified definition, each analyst can use different data and variations that produce different results. The purpose of the current paper is twofold: (a) to propose an alternative, multi-dimensional DEA model that handles weight flexibility using a different metric (an alternative optimization criterion) and (b) the inclusion of a computational stage that attempts to incorporate different perceptions in the measurement of sustainability and integrates machine learning to explore country sustainability composite indices under different perceptions and assumptions. This approach offers insights in areas such as feature selection and increases the trust in the results by exploiting an inclusive approach to the calculations. The method is used to calculate the sustainability of the 28 EU countries.

Suggested Citation

  • Georgios Tsaples & Jason Papathanasiou & Andreas C. Georgiou, 2022. "An Exploratory DEA and Machine Learning Framework for the Evaluation and Analysis of Sustainability Composite Indicators in the EU," Mathematics, MDPI, vol. 10(13), pages 1-27, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2277-:d:851418
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/13/2277/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/13/2277/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sneddon, Chris & Howarth, Richard B. & Norgaard, Richard B., 2006. "Sustainable development in a post-Brundtland world," Ecological Economics, Elsevier, vol. 57(2), pages 253-268, May.
    2. George E Halkos & Nickolaos G Tzeremes & Stavros A Kourtzidis, 2015. "Weight assurance region in two-stage additive efficiency decomposition DEA model: an application to school data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(4), pages 696-704, April.
    3. Chen, Chialin & Zhu, Joe & Yu, Jiun-Yu & Noori, Hamid, 2012. "A new methodology for evaluating sustainable product design performance with two-stage network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 221(2), pages 348-359.
    4. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    5. Lidia Angulo-Meza & Marcos Lins, 2002. "Review of Methods for Increasing Discrimination in Data Envelopment Analysis," Annals of Operations Research, Springer, vol. 116(1), pages 225-242, October.
    6. Dariush Khezrimotlagh & Yao Chen, 2018. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 217-234, Springer.
    7. Benítez-Peña, Sandra & Bogetoft, Peter & Romero Morales, Dolores, 2020. "Feature Selection in Data Envelopment Analysis: A Mathematical Optimization approach," Omega, Elsevier, vol. 96(C).
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    10. Sen, Amartya, 1997. "On Economic Inequality," OUP Catalogue, Oxford University Press, number 9780198292975, November.
    11. Karagiannis, Roxani & Karagiannis, Giannis, 2018. "Intra- and inter-group composite indicators using the BoD model," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 44-51.
    12. R. Allen & A. Athanassopoulos & R.G. Dyson & E. Thanassoulis, 1997. "Weights restrictions and value judgements in Data Envelopment Analysis: Evolution, development and future directions," Annals of Operations Research, Springer, vol. 73(0), pages 13-34, October.
    13. Corrado Lo Storto, 2016. "Ecological Efficiency Based Ranking of Cities: A Combined DEA Cross-Efficiency and Shannon’s Entropy Method," Sustainability, MDPI, vol. 8(2), pages 1-29, January.
    14. Kaiyang Zhong & Chenglin Li & Qing Wang, 2021. "Evaluation of Bank Innovation Efficiency with Data Envelopment Analysis: From the Perspective of Uncovering the Black Box between Input and Output," Mathematics, MDPI, vol. 9(24), pages 1-18, December.
    15. Tavana, Madjid & Ebrahimnejad, Ali & Santos-Arteaga, Francisco J. & Mansourzadeh, Seyed Mehdi & Matin, Reza Kazemi, 2018. "A hybrid DEA-MOLP model for public school assessment and closure decision in the City of Philadelphia," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 70-89.
    16. Sinuany-Stern, Zilla & Friedman, Lea, 1998. "DEA and the discriminant analysis of ratios for ranking units," European Journal of Operational Research, Elsevier, vol. 111(3), pages 470-478, December.
    17. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    18. Timo Kuosmanen & Mika Kortelainen, 2005. "Measuring Eco‐efficiency of Production with Data Envelopment Analysis," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 59-72, October.
    19. Zhijiang Li & Decai Tang & Mang Han & Brandon J. Bethel, 2018. "Comprehensive Evaluation of Regional Sustainable Development Based on Data Envelopment Analysis," Sustainability, MDPI, vol. 10(11), pages 1-18, October.
    20. Liang Liang & Feng Yang & Wade Cook & Joe Zhu, 2006. "DEA models for supply chain efficiency evaluation," Annals of Operations Research, Springer, vol. 145(1), pages 35-49, July.
    21. Nadia M. Guerrero & Juan Aparicio & Daniel Valero-Carreras, 2022. "Combining Data Envelopment Analysis and Machine Learning," Mathematics, MDPI, vol. 10(6), pages 1-22, March.
    22. Podinovski, Victor V., 2016. "Optimal weights in DEA models with weight restrictions," European Journal of Operational Research, Elsevier, vol. 254(3), pages 916-924.
    23. Tsaples, G. & Papathanasiou, J., 2021. "Data envelopment analysis and the concept of sustainability: A review and analysis of the literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    24. Ebrahimnejad, Ali & Tavana, Madjid & Santos-Arteaga, Francisco J., 2016. "An integrated data envelopment analysis and simulation method for group consensus ranking," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 1-17.
    25. Robinson, John, 2004. "Squaring the circle? Some thoughts on the idea of sustainable development," Ecological Economics, Elsevier, vol. 48(4), pages 369-384, April.
    26. Steve Bankes, 1993. "Exploratory Modeling for Policy Analysis," Operations Research, INFORMS, vol. 41(3), pages 435-449, June.
    27. Amartya K. Sen, 1997. "From Income Inequality to Economic Inequality," Southern Economic Journal, John Wiley & Sons, vol. 64(2), pages 384-401, October.
    28. Chen, Yao & Cook, Wade D. & Li, Ning & Zhu, Joe, 2009. "Additive efficiency decomposition in two-stage DEA," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1170-1176, August.
    29. Emmanuel Thanassoulis & Prasanta Kumar Dey & Konstantinos Petridis & Ioannis Goniadis & Andreas C. Georgiou, 2017. "Evaluating higher education teaching performance using combined analytic hierarchy process and data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(4), pages 431-445, April.
    30. Rogge, Nicky & De Jaeger, Simon & Lavigne, Carolien, 2017. "Waste Performance of NUTS 2-regions in the EU: A Conditional Directional Distance Benefit-of-the-Doubt Model," Ecological Economics, Elsevier, vol. 139(C), pages 19-32.
    31. Georgiou, Andreas C. & Thanassoulis, Emmanuel & Papadopoulou, Alexandra, 2022. "Using data envelopment analysis in markovian decision making," European Journal of Operational Research, Elsevier, vol. 298(1), pages 276-292.
    32. R. Ramanathan, 2002. "Combining indicators of energy consumption and CO 2 emissions: a cross-country comparison," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 17(3), pages 214-227.
    33. Reza Maddahi & Gholam Reza Jahanshahloo & Farhad Hosseinzadeh Lotfi & Ali Ebrahimnejad, 2014. "Optimising proportional weights as a secondary goal in DEA cross-efficiency evaluation," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 19(2), pages 234-245.
    34. Dimitris Despotis & Gregory Koronakos & Dimitris Sotiros, 2016. "Composition versus decomposition in two-stage network DEA: a reverse approach," Journal of Productivity Analysis, Springer, vol. 45(1), pages 71-87, February.
    35. Giuseppe Munda & Michaela Saisana, 2011. "Methodological Considerations on Regional Sustainability Assessment Based on Multicriteria and Sensitivity Analysis," Regional Studies, Taylor & Francis Journals, vol. 45(2), pages 261-276.
    36. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    37. Keyur Thaker & Vincent Charles & Abhay Pant & Tatiana Gherman, 2022. "A DEA and random forest regression approach to studying bank efficiency and corporate governance," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(6), pages 1258-1277, June.
    38. Liang Liang & Wade D. Cook & Joe Zhu, 2008. "DEA models for two‐stage processes: Game approach and efficiency decomposition," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(7), pages 643-653, October.
    39. C Kao & H-T Hung, 2005. "Data envelopment analysis with common weights: the compromise solution approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(10), pages 1196-1203, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    2. Tsaples, G. & Papathanasiou, J., 2021. "Data envelopment analysis and the concept of sustainability: A review and analysis of the literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Jiawei Yang & Lei Fang, 2022. "Average lexicographic efficiency decomposition in two-stage data envelopment analysis: an application to China’s regional high-tech innovation systems," Annals of Operations Research, Springer, vol. 312(2), pages 1051-1093, May.
    4. Koronakos, Gregory & Sotiros, Dimitris & Despotis, Dimitris K. & Kritikos, Manolis N., 2022. "Fair efficiency decomposition in network DEA: A compromise programming approach," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    5. Despotis, Dimitris K. & Koronakos, Gregory & Sotiros, Dimitris, 2016. "The “weak-link” approach to network DEA for two-stage processes," European Journal of Operational Research, Elsevier, vol. 254(2), pages 481-492.
    6. Khoveyni, Mohammad & Fukuyama, Hirofumi & Eslami, Robabeh & Yang, Guo-liang, 2019. "Variations effect of intermediate products on the second stage in two-stage processes," Omega, Elsevier, vol. 85(C), pages 35-48.
    7. Chen, Xiafei & Liu, Zhiying & Zhu, Qingyuan, 2020. "Reprint of "Performance evaluation of China's high-tech innovation process :Analysis based on the innovation value chain"," Technovation, Elsevier, vol. 94.
    8. Chen, Xiafei & Liu, Zhiying & Zhu, Qingyuan, 2018. "Performance evaluation of China's high-tech innovation process: Analysis based on the innovation value chain," Technovation, Elsevier, vol. 74, pages 42-53.
    9. Jianhui Xie & Xiaoxuan Zhu & Liang Liang, 2020. "A multiplicative method for estimating the potential gains from two-stage production system mergers," Annals of Operations Research, Springer, vol. 288(1), pages 475-493, May.
    10. Haitao Li & Jie Xiong & Jianhui Xie & Zhongbao Zhou & Jinlong Zhang, 2019. "A Unified Approach to Efficiency Decomposition for a Two-Stage Network DEA Model with Application of Performance Evaluation in Banks and Sustainable Product Design," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    11. Koronakos, Gregory & Sotiros, Dimitris & Despotis, Dimitris K., 2019. "Reformulation of Network Data Envelopment Analysis models using a common modelling framework," European Journal of Operational Research, Elsevier, vol. 278(2), pages 472-480.
    12. Li, Yongjun & Liu, Jin & Ang, Sheng & Yang, Feng, 2021. "Performance evaluation of two-stage network structures with fixed-sum outputs: An application to the 2018winter Olympic Games," Omega, Elsevier, vol. 102(C).
    13. Mohammad Amirkhan & Hosein Didehkhani & Kaveh Khalili-Damghani & Ashkan Hafezalkotob, 2018. "Measuring Performance of a Three-Stage Network Structure Using Data Envelopment Analysis and Nash Bargaining Game: A Supply Chain Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1429-1467, September.
    14. Sotiros, Dimitris & Koronakos, Gregory & Despotis, Dimitris K., 2019. "Dominance at the divisional efficiencies level in network DEA: The case of two-stage processes," Omega, Elsevier, vol. 85(C), pages 144-155.
    15. Dariush Akbarian, 2021. "Network DEA based on DEA-ratio," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-26, December.
    16. Meng, Fanyong & Xiong, Beibei, 2021. "Logical efficiency decomposition for general two-stage systems in view of cross efficiency," European Journal of Operational Research, Elsevier, vol. 294(2), pages 622-632.
    17. Ming-Fu Hsu & Ying-Shao Hsin & Fu-Jiing Shiue, 2022. "Business analytics for corporate risk management and performance improvement," Annals of Operations Research, Springer, vol. 315(2), pages 629-669, August.
    18. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    19. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
    20. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2020. "A Nerlovian cost inefficiency two-stage DEA model for modeling banks’ production process: Evidence from the Turkish banking system," Omega, Elsevier, vol. 95(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2277-:d:851418. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://www.mdpi.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.