IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i7p943-d1424542.html
   My bibliography  Save this article

Carbon Balance Zoning and Spatially Synergistic Carbon Reduction Pathways—A Case Study in the Yangtze River Delta in China

Author

Listed:
  • Hui Guo

    (Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Wei Sun

    (Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
    Institute for Carbon Neutral Development, Nanjing 210096, China)

Abstract

The concept of major function-oriented zones is highly compatible with the idea of spatially synergistic carbon reduction. In this study, 2005–2020 is taken as the research period, and 305 counties in the Yangtze River Delta (YRD) region are taken as the research unit. The S0M-K-means clustering model and GeoDetector are adopted on the basis of carbon emission/absorption accounting to analyse the spatial and temporal variations in the carbon balance in the YRD region. Furthermore, carbon balance zoning and influencing factors are analysed. Then, a regional spatially synergistic carbon reduction pathway is proposed. The results show that carbon absorption in the YRD region struggles to offset carbon emissions; the regional carbon imbalance is gradually becoming worse; and each county’s carbon emission/absorption shows a significant spatial imbalance. Optimised development zones and key development zones are high-value agglomerations of carbon emissions, while the main sources of carbon sinks in the YRD region are the key ecological functional zones. The YRD region has 87 high carbon control zones, 167 carbon emission optimisation zones, and 51 carbon sink functional zones, which are further subdivided into 9 types of carbon balance zones in accordance with the major function-oriented zones (MFOZs). Based on the driving factors of carbon balance changes in the YRD region, this study proposes differentiated spatially synergistic carbon reduction paths for each zone in accordance with the carbon balance zones. As the Yangtze River Delta is an essential engine for China’s economic development, the study of its carbon balance is highly relevant in formulating differentiated low-carbon development pathways for each functional zone and promoting regional spatially synergistic carbon reduction to realise the target of “dual-carbon” development.

Suggested Citation

  • Hui Guo & Wei Sun, 2024. "Carbon Balance Zoning and Spatially Synergistic Carbon Reduction Pathways—A Case Study in the Yangtze River Delta in China," Land, MDPI, vol. 13(7), pages 1-20, June.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:943-:d:1424542
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/7/943/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/7/943/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:943-:d:1424542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.