IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v178y2025i5d10.1007_s10584-025-03933-4.html
   My bibliography  Save this article

An assessment of ocean thermal energy conversion resources and climate change mitigation potential

Author

Listed:
  • Anna G. Nickoloff

    (University of Victoria)

  • Sophia T. Olim

    (University of Victoria)

  • Michael Eby

    (University of Victoria)

  • Andrew J. Weaver

    (University of Victoria)

Abstract

Ocean thermal energy conversion (OTEC) is a renewable energy system that harnesses the thermal gradient between surface and deep waters. Many multi-century simulations with a fully coupled climate-carbon cycle model are presented to explore the amount of extractable energy and the climate change mitigation potential from the widespread implementation of OTEC. The sustainability of OTEC power generation was assessed for present and possible future climate states. A warmer climate reduced the sustainable power potential of OTEC. OTEC could briefly produce over 35 TW of power and, depending on the climate state, maximum power production rates of 5 to 10 TW were found to be sustainable on multi-millennial timescales. Over 500 years of simulation, with a high emission scenario (equivalent to RCP8.5), the power from OTEC deployments, with peak power generation ranging from 3 to 15 TW at the year 2100, resulted in cumulative emission reductions equivalent to 36% to 111% of historical carbon emissions from 1750 to 2023 relative to the scenario without OTEC. Such significant emissions reductions coupled with sustained OTEC-induced mixing led to globally averaged atmosphere temperature decreases of up to 2.5 ºC by the year 2100 and up to 4 ºC by the year 2500 compared to a scenario without OTEC. While caution is required, and the engineering challenges would be large, early indications suggest that the large-scale implementation of OTEC could make a substantial contribution to climate change mitigation.

Suggested Citation

  • Anna G. Nickoloff & Sophia T. Olim & Michael Eby & Andrew J. Weaver, 2025. "An assessment of ocean thermal energy conversion resources and climate change mitigation potential," Climatic Change, Springer, vol. 178(5), pages 1-21, May.
  • Handle: RePEc:spr:climat:v:178:y:2025:i:5:d:10.1007_s10584-025-03933-4
    DOI: 10.1007/s10584-025-03933-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-025-03933-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-025-03933-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Langer, Jannis & Quist, Jaco & Blok, Kornelis, 2020. "Recent progress in the economics of ocean thermal energy conversion: Critical review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. Langer, Jannis & Infante Ferreira, Carlos & Quist, Jaco, 2022. "Is bigger always better? Designing economically feasible ocean thermal energy conversion systems using spatiotemporal resource data," Applied Energy, Elsevier, vol. 309(C).
    3. Yi-Cheng Chung & Chun-I Wu, 2024. "Enhancing Ocean Thermal Energy Conversion Performance: Optimized Thermoelectric Generator-Integrated Heat Exchangers with Longitudinal Vortex Generators," Energies, MDPI, vol. 17(2), pages 1-19, January.
    4. Rau, Greg H. & Baird, Jim R., 2018. "Negative-CO2-emissions ocean thermal energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 265-272.
    5. Shen, Wei & Chen, Xi & Qiu, Jing & Hayward, Jennifier A & Sayeef, Saad & Osman, Peter & Meng, Ke & Dong, Zhao Yang, 2020. "A comprehensive review of variable renewable energy levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Frances C. Moore & Katherine Lacasse & Katharine J. Mach & Yoon Ah Shin & Louis J. Gross & Brian Beckage, 2022. "Determinants of emissions pathways in the coupled climate–social system," Nature, Nature, vol. 603(7899), pages 103-111, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keiner, Dominik & Langer, Jannis & Gulagi, Ashish & Satymov, Rasul & Breyer, Christian, 2024. "Future role of ocean thermal energy converters in a 100% renewable energy system on the case of the Maldives," Energy, Elsevier, vol. 312(C).
    2. Xin Li & Huadong Guo & Guodong Cheng & Xiaoyu Song & Youhua Ran & Min Feng & Tao Che & Xinwu Li & Lei Wang & Anmin Duan & Donghui Shangguan & Deliang Chen & Rui Jin & Jie Deng & Jianbin Su & Bin Cao, 2025. "Polar regions are critical in achieving global sustainable development goals," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    3. Li, Biao & Xie, Heping & Sun, Licheng & Gao, Tianyi & Xia, Entong & Liu, Bowen & Wang, Jun & Long, Xiting, 2025. "Advanced exergy analysis and multi-objective optimization of dual-loop ORC utilizing LNG cold energy and geothermal energy," Renewable Energy, Elsevier, vol. 239(C).
    4. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    5. Salman, Muhammad & Long, Xingle & Wang, Guimei & Zha, Donglan, 2022. "Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design," Energy Policy, Elsevier, vol. 168(C).
    6. Tian, Jianchi & Li, Yang & Sun, Yan & Yang, Bo & Chen, Xuefeng, 2024. "Warming climate apathy to mitigate the disparity in climate policy support across distinct income strata," Energy Policy, Elsevier, vol. 192(C).
    7. Alhadhrami, Saeed & Soto, Gabriel J & Lindley, Ben, 2023. "Dispatch analysis of flexible power operation with multi-unit small modular reactors," Energy, Elsevier, vol. 280(C).
    8. Ploy Achakulwisut & Peter Erickson & Céline Guivarch & Roberto Schaeffer & Elina Brutschin & Steve Pye, 2023. "Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Lackner, Teresa & Fierro, Luca E. & Mellacher, Patrick, 2025. "Opinion dynamics meet agent-based climate economics: An integrated analysis of carbon taxation," Journal of Economic Behavior & Organization, Elsevier, vol. 229(C).
    10. Hassan Gholami & Harald Nils Røstvik, 2021. "Levelised Cost of Electricity (LCOE) of Building Integrated Photovoltaics (BIPV) in Europe, Rational Feed-In Tariffs and Subsidies," Energies, MDPI, vol. 14(9), pages 1-15, April.
    11. Fan, Chengcheng & Zhang, Chengbin & Chen, Yongping, 2024. "Dynamic operation characteristics of ocean thermal energy conversion using Kalina cycle," Renewable Energy, Elsevier, vol. 231(C).
    12. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
    13. Satymov, Rasul & Bogdanov, Dmitrii & Dadashi, Mojtaba & Lavidas, George & Breyer, Christian, 2024. "Techno-economic assessment of global and regional wave energy resource potentials and profiles in hourly resolution," Applied Energy, Elsevier, vol. 364(C).
    14. Zhang, Chengbin & Wu, Zhe & Wang, Jiadian & Ding, Ce & Gao, Tieyu & Chen, Yongping, 2023. "Thermodynamic performance of a radial-inflow turbine for ocean thermal energy conversion using ammonia," Renewable Energy, Elsevier, vol. 202(C), pages 907-920.
    15. Xu, Xin & An, Haizhong & Huang, Shupei & Jia, Nanfei & Qi, Yajie, 2024. "Measurement of daily climate physical risks and climate transition risks faced by China's energy sector stocks," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 625-640.
    16. Fabio Maria Aprà & Sander Smit & Raymond Sterling & Tatiana Loureiro, 2021. "Overview of the Enablers and Barriers for a Wider Deployment of CSP Tower Technology in Europe," Clean Technol., MDPI, vol. 3(2), pages 1-18, April.
    17. Guillermo Lopez & Maria de los Angeles Ortega Del Rosario & Arthur James & Humberto Alvarez, 2022. "Site Selection for Ocean Thermal Energy Conversion Plants (OTEC): A Case Study in Panama," Energies, MDPI, vol. 15(9), pages 1-24, April.
    18. Lu, Beichen & Yu, Yanni & Tian, Mingqian & Chen, Yun & Zhang, Li & Liu, Yanjun, 2024. "Experimental study of a high-power generation platform for ocean thermal energy conversion," Energy, Elsevier, vol. 309(C).
    19. Pu, Yuchen & Li, Qi & Zou, Xueli & Li, Ruirui & Li, Luoyi & Chen, Weirong & Liu, Hong, 2021. "Optimal sizing for an integrated energy system considering degradation and seasonal hydrogen storage," Applied Energy, Elsevier, vol. 302(C).
    20. Hambel, Christoph & van der Ploeg, Frederick, 2025. "Policy transition risk, carbon premiums, and asset prices," Journal of Monetary Economics, Elsevier, vol. 152(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:178:y:2025:i:5:d:10.1007_s10584-025-03933-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.