IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i4p800-d1630068.html
   My bibliography  Save this article

Carbon Balance Matching Relationships and Spatiotemporal Evolution Patterns in China’s National-Level Metropolitan Areas

Author

Listed:
  • Mengqi Liu

    (School of Architecture, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Yang Yu

    (School of Architecture, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Maomao Zhang

    (College of Public Administration, Huazhong University of Science and Technology, Wuhan 430079, China)

  • Pengtao Wang

    (School of Tourism, Xi’an International Studies University, Xi’an 710128, China)

  • Nuo Shi

    (School of Architecture, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Yichen Ren

    (School of Architecture, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Di Zhang

    (School of Asian and African Studies, Xi’an International Studies University, Xi’an 710128, China)

Abstract

In the urgent context of global climate change and carbon neutrality goals, effective carbon balance regulation is critical for achieving temperature control targets. Metropolitan areas encounter significant challenges in carbon emission reduction, energy transition advancement, and enhancement of sequestration capabilities. However, traditional carbon balance analysis methods have limitations in capturing dynamic changes and guiding precise regulation. Therefore, this study developed a dynamic–static classification system for carbon balance based on the Ecological Support Coefficient (ESC) and the Economic Contributive Coefficient (ECC). This system examined carbon emissions and carbon sequestration in China’s 14 national-level metropolitan areas from 2000 to 2020. The results showed that: (1) Carbon emissions showed an increasing trend, exhibiting a spatial distribution with higher levels in the north, moderate levels in the central region, and the lowest levels in the southeast. In contrast, carbon sequestration exhibited a spatial pattern with higher levels in the east, moderate levels in the central region, and lower levels in the west. (2) Static classification revealed that the ECC and ESC of metropolitan areas in the central and northern regions were relatively weaker than those in other regions. Dynamic classification further showed an upward trend in the economic and ecological capabilities of these central and northern metropolitan areas. In contrast, metropolitan areas along the coast and within the Yangtze River Economic Belt needed to optimize their economic–ecological coordination efficiency. Although southern coastal metropolitan areas demonstrated robust economic vitality, they encountered significant ecological support pressures. (3) Economic development level and ecological environmental quality were the predominant factors in metropolitan area classification. Regions with a higher ECC tended to exhibit an enhanced ESC, while regions with a stronger ESC prioritized economic growth. This classification system provided a solid scientific basis for formulating differentiated low-carbon transformation strategies, thereby supporting high-quality development in China’s metropolitan areas while maintaining a dynamic balance between economic and ecologic objectives. Moreover, it offered both theoretical foundations and practical guidance for optimizing sustainable development pathways in similar metropolitan areas globally.

Suggested Citation

  • Mengqi Liu & Yang Yu & Maomao Zhang & Pengtao Wang & Nuo Shi & Yichen Ren & Di Zhang, 2025. "Carbon Balance Matching Relationships and Spatiotemporal Evolution Patterns in China’s National-Level Metropolitan Areas," Land, MDPI, vol. 14(4), pages 1-26, April.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:800-:d:1630068
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/4/800/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/4/800/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Shuoshuo & Liu, Yaobin & Wei, Guoen & Bi, Mo & He, Bao-Jie, 2024. "Carbon surplus or carbon deficit under land use transformation in China?," Land Use Policy, Elsevier, vol. 143(C).
    2. Wang, Zheng & Zhu, Yanshuo & Zhu, Yongbin & Shi, Ying, 2016. "Energy structure change and carbon emission trends in China," Energy, Elsevier, vol. 115(P1), pages 369-377.
    3. Jiali He & Xiangfei Liu & Xuetong Wang & Xueyang Li & Linger Yu & Beibei Niu, 2024. "Spatiotemporal Evolution of Territorial Spaces and Its Effect on Carbon Emissions in Qingdao City, China," Land, MDPI, vol. 13(10), pages 1-22, October.
    4. Wang, Guofeng & Deng, Xiangzheng & Wang, Jingyu & Zhang, Fan & Liang, Shiqi, 2019. "Carbon emission efficiency in China: A spatial panel data analysis," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    5. Li, Jiasheng & Guo, Xiaomin & Chuai, Xiaowei & Xie, Fangjian & Yang, Feng & Gao, Runyi & Ji, Xuepeng, 2021. "Reexamine China’s terrestrial ecosystem carbon balance under land use-type and climate change," Land Use Policy, Elsevier, vol. 102(C).
    6. Hui Guo & Wei Sun, 2024. "Carbon Balance Zoning and Spatially Synergistic Carbon Reduction Pathways—A Case Study in the Yangtze River Delta in China," Land, MDPI, vol. 13(7), pages 1-20, June.
    7. Fan, Ying & Liu, Lan-Cui & Wu, Gang & Tsai, Hsien-Tang & Wei, Yi-Ming, 2007. "Changes in carbon intensity in China: Empirical findings from 1980-2003," Ecological Economics, Elsevier, vol. 62(3-4), pages 683-691, May.
    8. Rodríguez, Miguel & Pena-Boquete, Yolanda, 2017. "Carbon intensity changes in the Asian Dragons. Lessons for climate policy design," Energy Economics, Elsevier, vol. 66(C), pages 17-26.
    9. Shilong Piao & Jingyun Fang & Philippe Ciais & Philippe Peylin & Yao Huang & Stephen Sitch & Tao Wang, 2009. "The carbon balance of terrestrial ecosystems in China," Nature, Nature, vol. 458(7241), pages 1009-1013, April.
    10. Shigeto, Sawako & Yamagata, Yoshiki & Ii, Ryota & Hidaka, Masato & Horio, Masayuki, 2012. "An easily traceable scenario for 80% CO2 emission reduction in Japan through the final consumption-based CO2 emission approach: A case study of Kyoto-city," Applied Energy, Elsevier, vol. 90(1), pages 201-205.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shuoshuo & Liu, Yaobin & Wei, Guoen & Bi, Mo & He, Bao-Jie, 2024. "Carbon surplus or carbon deficit under land use transformation in China?," Land Use Policy, Elsevier, vol. 143(C).
    2. Wang, Shaojian & Shi, Chenyi & Fang, Chuanglin & Feng, Kuishuang, 2019. "Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model," Applied Energy, Elsevier, vol. 235(C), pages 95-105.
    3. Shuxuan Xing & Shengfu Yang & Haonan Sun & Yi Wang, 2023. "Spatiotemporal Changes of Terrestrial Carbon Storage in Rapidly Urbanizing Areas and Their Influencing Factors: A Case Study of Wuhan, China," Land, MDPI, vol. 12(12), pages 1-18, December.
    4. Rodríguez, Miguel, 2022. "Why do many prospective analyses of CO2 emissions fail? An illustrative example from China," Energy, Elsevier, vol. 244(PB).
    5. Minyoung Yang & Jinsoo Kim, 2022. "A Critical Review of the Definition and Estimation of Carbon Efficiency," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    6. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    7. Qiongzhi Liu & Jun Hao, 2022. "Regional Differences and Influencing Factors of Carbon Emission Efficiency in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(8), pages 1-15, April.
    8. Tan, Xiujie & Choi, Yongrok & Wang, Banban & Huang, Xiaoqi, 2020. "Does China's carbon regulatory policy improve total factor carbon efficiency? A fixed-effect panel stochastic frontier analysis," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    9. Peng, Yue & Wang, Wei & Zhen, Shangsong & Liu, Yunqiang, 2024. "Does digitalization help green consumption? Empirical test based on the perspective of supply and demand of green products," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
    10. Ning Xiang & Limao Wang & Shuai Zhong & Chen Zheng & Bo Wang & Qiushi Qu, 2021. "How Does the World View China’s Carbon Policy? A Sentiment Analysis on Twitter Data," Energies, MDPI, vol. 14(22), pages 1-17, November.
    11. Cerovac, Tin & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2014. "Wind energy integration into future energy systems based on conventional plants – The case study of Croatia," Applied Energy, Elsevier, vol. 135(C), pages 643-655.
    12. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    13. Qing Liu & Dongdong Yang & Lei Cao & Bruce Anderson, 2022. "Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Tropics: A Case Study of Hainan Island, China," Land, MDPI, vol. 11(2), pages 1-24, February.
    14. Li, Mengxu & Liu, Jianghua & Chen, Yang & Yang, Zhijiu, 2023. "Can sustainable development strategy reduce income inequality in resource-based regions? A natural resource dependence perspective," Resources Policy, Elsevier, vol. 81(C).
    15. Xuankai Deng & Yanhua Yu & Yanfang Liu, 2015. "Effect of Construction Land Expansion on Energy-Related Carbon Emissions: Empirical Analysis of China and Its Provinces from 2001 to 2011," Energies, MDPI, vol. 8(6), pages 1-22, June.
    16. Jiali He & Xiangfei Liu & Xuetong Wang & Xueyang Li & Linger Yu & Beibei Niu, 2024. "Spatiotemporal Evolution of Territorial Spaces and Its Effect on Carbon Emissions in Qingdao City, China," Land, MDPI, vol. 13(10), pages 1-22, October.
    17. Liu, Xiaoxu & Liu, Xiaomin & Yang, Yaotian & Yu, Miao & Tian, Hailong, 2024. "The productivity anomalies and economic losses of different grassland ecosystems caused by flash drought," Agricultural Water Management, Elsevier, vol. 305(C).
    18. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    19. Dong Jichang & He Jing & Li Xiuting & Mou Xindi & Dong Zhi, 2020. "The Effect of Industrial Structure Change on Carbon Dioxide Emissions: A Cross-Country Panel Analysis," Journal of Systems Science and Information, De Gruyter, vol. 8(1), pages 1-16, February.
    20. Gui, Shusen & Mu, Hailin & Li, Nan, 2014. "Analysis of impact factors on China's CO2 emissions from the view of supply chain paths," Energy, Elsevier, vol. 74(C), pages 405-416.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:800-:d:1630068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.