IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i12p2195-d1544697.html
   My bibliography  Save this article

Analysing the Spatial and Temporal Characteristics of Ecological Land Encroachment by Cropland Expansion and Its Drivers in Cambodia

Author

Listed:
  • Danni Su

    (Faculty of Geography, Yunnan Normal University, Kunming 650500, China
    GIS Technology Research Center of Resource and Environment in Western China, Ministry of Education, Yunnan Normal University, Kunming 650500, China)

  • Kun Yang

    (Faculty of Geography, Yunnan Normal University, Kunming 650500, China
    GIS Technology Research Center of Resource and Environment in Western China, Ministry of Education, Yunnan Normal University, Kunming 650500, China)

  • Zongqi Peng

    (Faculty of Geography, Yunnan Normal University, Kunming 650500, China
    GIS Technology Research Center of Resource and Environment in Western China, Ministry of Education, Yunnan Normal University, Kunming 650500, China)

  • Run Sun

    (Faculty of Geography, Yunnan Normal University, Kunming 650500, China
    GIS Technology Research Center of Resource and Environment in Western China, Ministry of Education, Yunnan Normal University, Kunming 650500, China)

  • Mingfeng Zhang

    (Faculty of Geography, Yunnan Normal University, Kunming 650500, China
    GIS Technology Research Center of Resource and Environment in Western China, Ministry of Education, Yunnan Normal University, Kunming 650500, China)

  • Lusha Ma

    (Faculty of Geography, Yunnan Normal University, Kunming 650500, China
    GIS Technology Research Center of Resource and Environment in Western China, Ministry of Education, Yunnan Normal University, Kunming 650500, China)

  • Jingcong Ma

    (Faculty of Geography, Yunnan Normal University, Kunming 650500, China
    GIS Technology Research Center of Resource and Environment in Western China, Ministry of Education, Yunnan Normal University, Kunming 650500, China)

  • Tao Li

    (Faculty of Geography, Yunnan Normal University, Kunming 650500, China
    GIS Technology Research Center of Resource and Environment in Western China, Ministry of Education, Yunnan Normal University, Kunming 650500, China)

Abstract

The rapid expansion of cropland in Cambodia, the world’s seventh-largest rice exporter, has created an imbalance in land use structure. However, there is a lack of quantitative investigation of the loss of ecological land as a result of the expansion of cropland and its drivers. In this research, spatial autocorrelation, landscape pattern index and transfer matrix methods were used based on land use data from 2000 to 2023. Then, the eXtreme Gradient Boosting-SHapley Additive exPlanations (XGBoost-SHAP) and Geographic Detector were used to explore the drivers of cropland expansion. The findings indicate that the expanse of agricultural land in Cambodia has significantly increased by 13.47%. The proportion of cropland to the land area (37.87%) is close to that of forest (40.19%). Cultivated land is dominated by rice fields, supplemented by drylands. Spatial clustering is obvious in both drylands and rice fields. Drylands are mainly concentrated in the eastern and western mountainous areas and the northern border, while rice fields are concentrated in the central plains. Cultivated land encroached on a total of 30,579.27km 2 of ecological land, of which 62.88% was dry land and 37.12% was rice fields. Forests and shrubs are the main source of expansion of cropland. In addition, soil type (0.18), elevation (0.17) and GDP (0.17), population (0.52) and their interactions strongly drove the expansion of dryland and rice fields. Cambodia should conduct scientific research to assess the demand for cropland by population growth and economic progress. It should realize the orderly growth of cultivated land, reduce the damage to ecological land, and promote the coordinated development of society, environment and economy.

Suggested Citation

  • Danni Su & Kun Yang & Zongqi Peng & Run Sun & Mingfeng Zhang & Lusha Ma & Jingcong Ma & Tao Li, 2024. "Analysing the Spatial and Temporal Characteristics of Ecological Land Encroachment by Cropland Expansion and Its Drivers in Cambodia," Land, MDPI, vol. 13(12), pages 1-17, December.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2195-:d:1544697
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/12/2195/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/12/2195/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Uisso, Amani Michael & Tanrıvermiş, Harun, 2021. "Driving factors and assessment of changes in the use of arable land in Tanzania," Land Use Policy, Elsevier, vol. 104(C).
    2. Matthew G. Betts & Christopher Wolf & William J. Ripple & Ben Phalan & Kimberley A. Millers & Adam Duarte & Stuart H. M. Butchart & Taal Levi, 2017. "Global forest loss disproportionately erodes biodiversity in intact landscapes," Nature, Nature, vol. 547(7664), pages 441-444, July.
    3. Lingfei Weng & Wentao Dou & Yejing Chen, 2023. "Study on the Coupling Effect of Agricultural Production, Road Construction, and Ecology: The Case for Cambodia," Agriculture, MDPI, vol. 13(4), pages 1-19, March.
    4. Gebresilasse, Mesay, 2023. "Rural roads, agricultural extension, and productivity," Journal of Development Economics, Elsevier, vol. 162(C).
    5. Ariel Ortiz-Bobea & Toby R. Ault & Carlos M. Carrillo & Robert G. Chambers & David B. Lobell, 2021. "Anthropogenic climate change has slowed global agricultural productivity growth," Nature Climate Change, Nature, vol. 11(4), pages 306-312, April.
    6. Sean E. H. Pang & J. W. Ferry Slik & Ryan A. Chisholm & Edward L. Webb, 2024. "Conserving Southeast Asian trees requires mitigating both climate and land-use change," Nature Sustainability, Nature, vol. 7(10), pages 1313-1323, October.
    7. Wang, Huan & Zhang, Chao & Yao, Xiaochuang & Yun, Wenju & Ma, Jiani & Gao, Lulu & Li, Pengshan, 2022. "Scenario simulation of the tradeoff between ecological land and farmland in black soil region of Northeast China," Land Use Policy, Elsevier, vol. 114(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wencun Zhou & Zhengjia Liu & Sisi Wang, 2023. "Spatiotemporal Dynamics of the Cropland Area and Its Response to Increasing Regional Extreme Weather Events in the Farming-Pastoral Ecotone of Northern China during 1992–2020," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    2. Alexander C. Abajian & Tamma Carleton & Kyle C. Meng & Olivier Deschênes, 2025. "Quantifying the global climate feedback from energy-based adaptation," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    3. Wen-Yong Guo & Josep M. Serra-Diaz & Wolf L. Eiserhardt & Brian S. Maitner & Cory Merow & Cyrille Violle & Matthew J. Pound & Miao Sun & Ferry Slik & Anne Blach-Overgaard & Brian J. Enquist & Jens-Chr, 2023. "Climate change and land use threaten global hotspots of phylogenetic endemism for trees," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Federica Alfani & Vasco Molini & Giacomo Pallante & Alessandro PalmaGran, 2024. "Job displacement and reallocation failure. Evidence from climate shocks in Morocco," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 51(1), pages 1-31.
    5. Lu Han & Yanbo Qu & Shufeng Liang & Luyan Shi & Min Zhang & Haiyan Jia, 2024. "Spatiotemporal Differentiation of Land Ecological Security and Optimization Based on GeoSOS-FLUS Model: A Case Study of the Yellow River Delta in China Toward Sustainability," Land, MDPI, vol. 13(11), pages 1-21, November.
    6. Zhang, Yang & Zhang, Yan & Gao, Yan & McLaughlin, Neil B. & Huang, Dandan & Wang, Yang & Chen, Xuewen & Zhang, Shixiu & Liang, Aizhen, 2024. "Effects of tillage practices on environment, energy, and economy of maize production in Northeast China," Agricultural Systems, Elsevier, vol. 215(C).
    7. Stephanie D. Maier & Jan Paul Lindner & Javier Francisco, 2019. "Conceptual Framework for Biodiversity Assessments in Global Value Chains," Sustainability, MDPI, vol. 11(7), pages 1-34, March.
    8. Stefano Pinardi & Matteo Salis & Gabriele Sartor & Rosa Meo, 2023. "EU−Africa: Digital and Social Questions in a Multicultural Agroecological Transition for the Cocoa Production in Africa," Social Sciences, MDPI, vol. 12(7), pages 1-29, July.
    9. Moriguchi, Kai & Ueki, Tatsuhito & Saito, Masashi, 2020. "Establishing optimal forest harvesting regulation with continuous approximation," Operations Research Perspectives, Elsevier, vol. 7(C).
    10. Dai, Zhifeng & Zhu, Haoyang, 2024. "Climate policy uncertainty and urban green total factor productivity: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 96(PA).
    11. Anna Kocira & Mariola Staniak, 2025. "Role of Agriculture in Implementing the Concept of Sustainable Food System," Agriculture, MDPI, vol. 15(10), pages 1-5, May.
    12. Bressler, R. Daniel & Papp, Anna & Sarmiento, Luis & Shrader, Jeffrey G. & Wilson, Andrew J., 2025. "Working Under the Sun: The Role of Occupation in Temperature-Related Mortality in Mexico," IZA Discussion Papers 17759, Institute of Labor Economics (IZA).
    13. Khed, Vijayalaxmi D. & Jat, M. L. & Krishna, Vijesh V., 2022. "Incentives for Experimenting with Sustainable Intensification: Can Direct Payments to Farmers Help Diversify the Cropping Systems in South India?," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 0(Number 3), September.
    14. Quintero-Angel, Mauricio & Coles, Ashley & Duque-Nivia, Andrés A., 2021. "A historical perspective of landscape appropriation and land use transitions in the Colombian South Pacific," Ecological Economics, Elsevier, vol. 181(C).
    15. Wang, Yuhan & Lewis, David J., 2024. "Wildfires and climate change have lowered the economic value of western U.S. forests by altering risk expectations," Journal of Environmental Economics and Management, Elsevier, vol. 123(C).
    16. Mastawesha Misganaw Engdaw & Brian Mayanja & Sabrina Rose & Ana Maria Loboguerrero & Aniruddha Ghosh, 2024. "Bridging evidence gaps in attributing loss and damage, and measures to minimize impacts," PLOS Climate, Public Library of Science, vol. 3(8), pages 1-11, August.
    17. Bolster, Carl H. & et al. (+11), 2023. "Agriculture, Food Systems, and Rural Communities," USDA Miscellaneous 352114, United States Department of Agriculture.
    18. Sun, Xueqing & Xiang, Pengcheng & Cong, Kexin, 2023. "Research on early warning and control measures for arable land resource security," Land Use Policy, Elsevier, vol. 128(C).
    19. Luis Guillermo Becerra-Valbuena, 2021. "Droughts and Agricultural Adaptation to Climate Change," Working Papers halshs-03420657, HAL.
    20. Khodran Alzahrani & Mubashar Ali & Muhammad Imran Azeem & Bader Alhafi Alotaibi, 2023. "Efficacy of Public Extension and Advisory Services for Sustainable Rice Production," Agriculture, MDPI, vol. 13(5), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2195-:d:1544697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.