IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i4p458-d777846.html
   My bibliography  Save this article

Impact Mechanism of the Urban Network on Carbon Emissions in Rapidly Developing Regions: Example of 47 Cities in Southwest China

Author

Listed:
  • Jie Su

    (College of Architecture and Environment, Sichuan University, Chengdu 610065, China)

  • Bo Zhou

    (College of Architecture and Environment, Sichuan University, Chengdu 610065, China)

  • Yuanpei Liao

    (College of Architecture and Environment, Sichuan University, Chengdu 610065, China)

  • Chaoshen Wang

    (College of Architecture and Environment, Sichuan University, Chengdu 610065, China)

  • Tian Feng

    (College of Architecture and Environment, Sichuan University, Chengdu 610065, China)

Abstract

Southwest China faces harsh environmental pollution challenges and rapid development. Against this backdrop, exploring the impact mechanism of the urban network on carbon emissions in rapidly developing regions is of great significance to the balance between regional development and carbon emissions reduction, as well as regional sustainable development. The objective of this study is to quantify the relationship between carbon emissions and the urban network, using panel data analysis for 47 cities in southwest China from 2010 to 2019. Therefore, several urban network indices were selected and quantitatively studied by using the spatial Durbin model to reveal the impact mechanism of the urban network on carbon emissions in rapidly developing regions. The results show that: (1) the growth of carbon emissions in a city has a significant positive spatial spillover effect on the surrounding areas; (2) the temporal and spatial distribution of carbon emissions is highly coincident with the urban network; (3) the urban network has a two-sided impact mechanism of promoting and inhibiting carbon emissions; and (4) the effect of the impact mechanism is affected by regional development conditions, and the promotion effect plays the main role in rapidly developing regions.

Suggested Citation

  • Jie Su & Bo Zhou & Yuanpei Liao & Chaoshen Wang & Tian Feng, 2022. "Impact Mechanism of the Urban Network on Carbon Emissions in Rapidly Developing Regions: Example of 47 Cities in Southwest China," Land, MDPI, vol. 11(4), pages 1-19, March.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:4:p:458-:d:777846
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/4/458/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/4/458/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gudipudi, Ramana & Fluschnik, Till & Ros, Anselmo García Cantú & Walther, Carsten & Kropp, Jürgen P., 2016. "City density and CO2 efficiency," Energy Policy, Elsevier, vol. 91(C), pages 352-361.
    2. Liu, Xingjian & Wang, Mingshu & Qiang, Wei & Wu, Kang & Wang, Xiaomi, 2020. "Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions," Applied Energy, Elsevier, vol. 261(C).
    3. Sheng, Pengfei & Li, Jun & Zhai, Mengxin & Huang, Shoujun, 2020. "Coupling of economic growth and reduction in carbon emissions at the efficiency level: Evidence from China," Energy, Elsevier, vol. 213(C).
    4. Su, Hongwei & Liang, Biming, 2021. "The impact of regional market integration and economic opening up on environmental total factor energy productivity in Chinese provinces," Energy Policy, Elsevier, vol. 148(PA).
    5. Zhang, Fan & Deng, Xiangzheng & Phillips, Fred & Fang, Chuanglin & Wang, Chao, 2020. "Impacts of industrial structure and technical progress on carbon emission intensity: Evidence from 281 cities in China," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    6. Wang, Shaojian & Shi, Chenyi & Fang, Chuanglin & Feng, Kuishuang, 2019. "Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model," Applied Energy, Elsevier, vol. 235(C), pages 95-105.
    7. Zhang, Ning & Yu, Keren & Chen, Zhongfei, 2017. "How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis," Energy Policy, Elsevier, vol. 107(C), pages 678-687.
    8. Alam, Md. Mahmudul & Murad, Md. Wahid, 2020. "The impacts of economic growth, trade openness and technological progress on renewable energy use in organization for economic co-operation and development countries," Renewable Energy, Elsevier, vol. 145(C), pages 382-390.
    9. Branger, Frédéric & Quirion, Philippe, 2015. "Reaping the carbon rent: Abatement and overallocation profits in the European cement industry, insights from an LMDI decomposition analysis," Energy Economics, Elsevier, vol. 47(C), pages 189-205.
    10. Wang, Yuan & Li, Li & Kubota, Jumpei & Han, Rong & Zhu, Xiaodong & Lu, Genfa, 2016. "Does urbanization lead to more carbon emission? Evidence from a panel of BRICS countries," Applied Energy, Elsevier, vol. 168(C), pages 375-380.
    11. Geniaux, Ghislain & Martinetti, Davide, 2018. "A new method for dealing simultaneously with spatial autocorrelation and spatial heterogeneity in regression models," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 74-85.
    12. Li, Huanan & Mu, Hailin & Zhang, Ming & Li, Nan, 2011. "Analysis on influence factors of China's CO2 emissions based on Path–STIRPAT model," Energy Policy, Elsevier, vol. 39(11), pages 6906-6911.
    13. Kai Zhu & Manya Tu & Yingcheng Li, 2022. "Did Polycentric and Compact Structure Reduce Carbon Emissions? A Spatial Panel Data Analysis of 286 Chinese Cities from 2002 to 2019," Land, MDPI, vol. 11(2), pages 1-15, January.
    14. Chuai, Xiaowei & Yuan, Ye & Zhang, Xiuying & Guo, Xiaomin & Zhang, Xiaolei & Xie, Fangjian & Zhao, Rongqin & Li, Jianbao, 2019. "Multiangle land use-linked carbon balance examination in Nanjing City, China," Land Use Policy, Elsevier, vol. 84(C), pages 305-315.
    15. Wang, Shaojian & Liu, Xiaoping & Zhou, Chunshan & Hu, Jincan & Ou, Jinpei, 2017. "Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities," Applied Energy, Elsevier, vol. 185(P1), pages 189-200.
    16. Khezri, Mohsen & Karimi, Mohammad Sharif & Khan, Y.A. & Abbas, S.Z., 2021. "The spillover of financial development on CO2 emission: A spatial econometric analysis of Asia-Pacific countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Liu, Kai & Xue, Mingyue & Peng, Mengjie & Wang, Chengxin, 2020. "Impact of spatial structure of urban agglomeration on carbon emissions: An analysis of the Shandong Peninsula, China," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    18. Wen, Lanjiao & Chatalova, Lioudmila & Gao, Xin & Zhang, Anlu, 2021. "Reduction of carbon emissions through resource-saving and environment-friendly regional economic integration: Evidence from Wuhan metropolitan area, China," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    19. Tahmasebi, Asghar & Askaribezayeh, Fatemeh, 2021. "Microfinance and social capital formation- a social network analysis approach," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    20. Fang, Chuanglin & Wang, Shaojian & Li, Guangdong, 2015. "Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities," Applied Energy, Elsevier, vol. 158(C), pages 519-531.
    21. Sider, Timothy & Alam, Ahsan & Zukari, Mohamad & Dugum, Hussam & Goldstein, Nathan & Eluru, Naveen & Hatzopoulou, Marianne, 2013. "Land-use and socio-economics as determinants of traffic emissions and individual exposure to air pollution," Journal of Transport Geography, Elsevier, vol. 33(C), pages 230-239.
    22. Ivan Muñiz & Andrés Dominguez, 2020. "The Impact of Urban Form and Spatial Structure on per Capita Carbon Footprint in U.S. Larger Metropolitan Areas," Sustainability, MDPI, vol. 12(1), pages 1-19, January.
    23. Li, Guangchen & Wei, Weixian, 2021. "Financial development, openness, innovation, carbon emissions, and economic growth in China," Energy Economics, Elsevier, vol. 97(C).
    24. Xia, Chang & Zhang, Anqi & Wang, Haijun & Zhang, Boen & Zhang, Yan, 2019. "Bidirectional urban flows in rapidly urbanizing metropolitan areas and their macro and micro impacts on urban growth: A case study of the Yangtze River middle reaches megalopolis, China," Land Use Policy, Elsevier, vol. 82(C), pages 158-168.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Longji Zeng & Yuandi Wang & Yajuan Deng, 2022. "How Land Transactions Affect Carbon Emissions: Evidence from China," Land, MDPI, vol. 11(5), pages 1-25, May.
    2. Qianyu Zhao & Boyu Xie & Mengyao Han, 2023. "Unpacking the Sub-Regional Spatial Network of Land-Use Carbon Emissions: The Case of Sichuan Province in China," Land, MDPI, vol. 12(10), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changlong Sun & Yongli Zhang & Wenwen Ma & Rong Wu & Shaojian Wang, 2022. "The Impacts of Urban Form on Carbon Emissions: A Comprehensive Review," Land, MDPI, vol. 11(9), pages 1-20, August.
    2. Ke Luo & Shuo Chen & Shixi Cui & Yuantao Liao & Yu He & Chunshan Zhou & Shaojian Wang, 2023. "Examining the Overall and Heterogeneous Impacts of Urban Spatial Structure on Carbon Emissions: A Case Study of Guangdong Province, China," Land, MDPI, vol. 12(9), pages 1-19, September.
    3. Wang, Jieyu & Wang, Shaojian & Li, Shijie & Feng, Kuishuang, 2019. "Coupling analysis of urbanization and energy-environment efficiency: Evidence from Guangdong province," Applied Energy, Elsevier, vol. 254(C).
    4. Yuxin Liu & Chenjing Fan & Dongdong Xue, 2024. "A Review of the Effects of Urban and Green Space Forms on the Carbon Budget Using a Landscape Sustainability Framework," Sustainability, MDPI, vol. 16(5), pages 1-29, February.
    5. Xiao, Huijuan & Duan, Zhiyuan & Zhou, Ya & Zhang, Ning & Shan, Yuli & Lin, Xiyan & Liu, Guosheng, 2019. "CO2 emission patterns in shrinking and growing cities: A case study of Northeast China and the Yangtze River Delta," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Song, Weize & Zhang, Xiaoling & An, Kangxin & Yang, Tao & Li, Heng & Wang, Can, 2021. "Quantifying the spillover elasticities of urban built environment configurations on the adjacent traffic CO2 emissions in mainland China," Applied Energy, Elsevier, vol. 283(C).
    7. Wang, Shaojian & Shi, Chenyi & Fang, Chuanglin & Feng, Kuishuang, 2019. "Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model," Applied Energy, Elsevier, vol. 235(C), pages 95-105.
    8. Ran Guo & Hong Leng & Qing Yuan & Shiyi Song, 2022. "Impact of Urban Form on CO 2 Emissions under Different Socioeconomic Factors: Evidence from 132 Small and Medium-Sized Cities in China," Land, MDPI, vol. 11(5), pages 1-20, May.
    9. Zhang, Fan & Deng, Xiangzheng & Phillips, Fred & Fang, Chuanglin & Wang, Chao, 2020. "Impacts of industrial structure and technical progress on carbon emission intensity: Evidence from 281 cities in China," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    10. Rong Wu & Yongli Zhang & Meilin Dai & Qingyin Li & Changlong Sun, 2023. "The Heterogeneity of the Drivers of Urban Form in China: Perspectives from Regional Disparities and Development Stage Variations," Land, MDPI, vol. 12(7), pages 1-20, July.
    11. Zhixiong Wang & Fuhan Li & Zihan Xie & Qingyin Li & Yongli Zhang & Meilin Dai, 2023. "Decoupling CO 2 Emissions from Economic Growth in China’s Cities from 2000 to 2020: A Case Study of the Pearl River Delta Agglomeration," Land, MDPI, vol. 12(9), pages 1-14, September.
    12. Yulan Lv & Yumeng Pang & Buhari Doğan, 2022. "The role of Chinese fiscal decentralization in the governance of carbon emissions: perspectives from spatial effects decomposition and its heterogeneity," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 68(3), pages 635-668, June.
    13. Xu, Chao & Haase, Dagmar & Su, Meirong & Yang, Zhifeng, 2019. "The impact of urban compactness on energy-related greenhouse gas emissions across EU member states: Population density vs physical compactness," Applied Energy, Elsevier, vol. 254(C).
    14. Yahui Guang & Yongbin Huang, 2022. "Urban Form and Household Energy Consumption: Evidence from China Panel Data," Land, MDPI, vol. 11(8), pages 1-15, August.
    15. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    16. Jikun Jiang & Shenglai Zhu & Weihao Wang, 2022. "Carbon Emissions, Economic Growth, Urbanization, and Foreign Trade in China: Empirical Evidence from ARDL Models," Sustainability, MDPI, vol. 14(15), pages 1-15, August.
    17. Liu, Xingjian & Wang, Mingshu & Qiang, Wei & Wu, Kang & Wang, Xiaomi, 2020. "Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions," Applied Energy, Elsevier, vol. 261(C).
    18. Zhen Wang & Xupeng Zhang & Chaozheng Zhang & Qing Yang, 2022. "How Regional Integration Affects Urban Green Development Efficiency: Evidence from Urban Agglomeration in the Middle Reaches of the Yangtze River," IJERPH, MDPI, vol. 19(13), pages 1-16, June.
    19. Gudipudi, Ramana & Rybski, Diego & Lüdeke, Matthias K.B. & Zhou, Bin & Liu, Zhu & Kropp, Jürgen P., 2019. "The efficient, the intensive, and the productive: Insights from urban Kaya scaling," Applied Energy, Elsevier, vol. 236(C), pages 155-162.
    20. Eryu Zhang & Xiaoyu He & Peng Xiao, 2022. "Does Smart City Construction Decrease Urban Carbon Emission Intensity? Evidence from a Difference-in-Difference Estimation in China," Sustainability, MDPI, vol. 14(23), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:4:p:458-:d:777846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.