IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i2p273-d746778.html
   My bibliography  Save this article

Characterizing Dominant Field-Scale Cropping Sequences for a Potato and Vegetable Growing Region in Central Wisconsin

Author

Listed:
  • Emily Marrs Heineman

    (Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, WI 53706, USA)

  • Christopher J. Kucharik

    (Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, WI 53706, USA
    Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA)

Abstract

Crop rotations are known to improve soil health by replenishing lost nutrients, increasing organic matter, improving microbial activity, and reducing disease risk and weed pressure. We characterized the spatial distribution of crops and dominant field-scale cropping sequences from 2008 to 2019 for the Wisconsin Central Sands (WCS) region, a major producer of potato and vegetables in the U.S. The dominant two- and three-year rotations were determined, with an additional focus on assessing regional potato rotation management. Our results suggest corn and soybean are the two most widely planted crops, occurring on 67% and 36% of all agricultural land at least once during the study period. The most frequent two- and three-year crop rotations include corn, soybean, alfalfa, sweet corn, potato, and beans, with continuous corn being the most dominant two- and three-year rotations (13.2% and 8.5% of agricultural land, respectively). While four- and five-year rotations for potato are recommended to combat pest and disease pressure, 23.2% and 65.9% of potato fields returned to that crop in rotation after two and three years, respectively. Furthermore, 5.6% of potato fields were planted continuously with that crop. Given potato’s high nitrogen (N) fertilizer requirements, the prevalence of sandy soils, and ongoing water quality issues, adopting more widespread use of four- or five-year rotations of potato with crops that require zero or less N fertilizer could reduce groundwater nitrate concentrations and improve water quality.

Suggested Citation

  • Emily Marrs Heineman & Christopher J. Kucharik, 2022. "Characterizing Dominant Field-Scale Cropping Sequences for a Potato and Vegetable Growing Region in Central Wisconsin," Land, MDPI, vol. 11(2), pages 1-16, February.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:2:p:273-:d:746778
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/2/273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/2/273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David A. Hennessy, 2006. "On Monoculture and the Structure of Crop Rotations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(4), pages 900-914.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xing & Lehtonen, Heikki & Purola, Tuomo & Pavlova, Yulia & Rötter, Reimund & Palosuo, Taru, 2016. "Dynamic economic modelling of crop rotations with farm management practices under future pest pressure," Agricultural Systems, Elsevier, vol. 144(C), pages 65-76.
    2. Mauro Vigani & Manuel Gomez-Barbero & Emilio Rodríguez-Cerezo, 2015. "The determinants of wheat yields: the role of sustainable innovation, policies and risks in France and Hungary," JRC Research Reports JRC95950, Joint Research Centre.
    3. Ji, Yongjie & Rabotyagov, Sergey & Kling, Catherine L., 2014. "Crop Choice and Rotational Effects: A Dynamic Model of Land Use in Iowa in Recent Years," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170366, Agricultural and Applied Economics Association.
    4. Ji, Yongjie & Rabotyagov, sergey & Valcu-Lisman, Adriana, 2015. "Estimating Adoption of Cover Crops Using Preferences Revealed by a Dynamic Crop Choice Model," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205799, Agricultural and Applied Economics Association.
    5. Kurkalova, Lyubov A. & Randall, Stephen M., 2015. "Elasticities of demand for energy inputs in crop production: impact of rotation," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205298, Agricultural and Applied Economics Association.
    6. Federico Ciliberto & GianCarlo Moschini & Edward D. Perry, 2019. "Valuing product innovation: genetically engineered varieties in US corn and soybeans," RAND Journal of Economics, RAND Corporation, vol. 50(3), pages 615-644, September.
    7. Ibirénoyé Romaric Sodjahin & Fabienne Femenia & Obafemi Philippe Koutchade & A. Carpentier, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: estimation based on farm cost accounting data [Valeur économique des effets agronomiques de la diversification de," Working Papers hal-03639951, HAL.
    8. Renwick, Alan W. & Revoredo-Giha, Cesar & Topp, Kairsty, 2007. "Modelling the Adoption of Crop Rotation Practices in Organic Mixed Farms," Working Papers 109390, Scotland's Rural College (formerly Scottish Agricultural College), Land Economy & Environment Research Group.
    9. Alain Carpentier & Ibirénoyé Honoré Romaric Sodjahin & Rémy Ballot, 2022. "On the economics of crop rotation diversification. Valuing pre crop and cropping system effects and accounting for opportunity costs," Post-Print hal-04793152, HAL.
    10. Kaninda Tshikala, Sam & Fonsah, Esendugue Greg & Boyhan, George & Little, Elizabeth & Gaskin, Julia, 2018. "Crop Rotation Systems for High-Value, Cool-Season Vegetables in the Southern United States," Journal of Food Distribution Research, Food Distribution Research Society, vol. 49(01), March.
    11. Sanna Lötjönen & Markku Ollikainen, 2017. "Does crop rotation with legumes provide an efficient means to reduce nutrient loads and GHG emissions?," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(4), pages 283-312, December.
    12. Ridier, Aude & Chaib, Karim & Roussy, Caroline, 2012. "The adoption of innovative cropping systems under price and production risks: a dynamic model of crop rotation choice," Working Papers 207985, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    13. Hongli Feng & Ofir D. Rubin & Bruce A. Babcock, 2008. "Greenhouse Gas Impacts of Ethanol from Iowa Corn: Life Cycle Analysis versus System-wide Accounting," Center for Agricultural and Rural Development (CARD) Publications 08-wp461, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    14. Deininger,Klaus W. & Ali,Daniel Ayalew & Kussul,Nataliia & Lavreniuk,Mykola & Nivievskyi,Oleg, 2020. "Using Machine Learning to Assess Yield Impacts of Crop Rotation : Combining Satellite and Statistical Data for Ukraine," Policy Research Working Paper Series 9306, The World Bank.
    15. Tran, Dat Q. & Kurkalova, Lyubov A., 2017. "Testing for complementarity between the use of continuous no-till and cover crops: an application of Entropy approach," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259149, Agricultural and Applied Economics Association.
    16. Thomas, Alban & Chakir, Raja, 2020. "Unintended consequences of environmental policies: the case of set-aside and agricultural intensification," TSE Working Papers 20-1066, Toulouse School of Economics (TSE).
    17. Agnieszka Andrzejewska & Maria Biber, 2025. "The Effect of Long-Term Soil System Use and Diversified Fertilization on the Sustainability of the Soil Fertility—Organic Matter and Selected Trace Elements," Sustainability, MDPI, vol. 17(7), pages 1-32, March.
    18. Raja Chakir & Julien Hardelin, 2010. "Crop Insurance and Pesticides in French agriculture: an empirical analysis of multiple risks management," Working Papers 2010/04, INRA, Economie Publique.
    19. Cui, X., 2018. "Adaptation to Climate Change: Evidence from US Acreage Response," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277094, International Association of Agricultural Economists.
    20. Hodde, Whitney & Sesmero, Juan & Gramig, Benjamin & Vyn, Tony & Doering, Otto, 2016. "Climate Change and the Economics of Conservation Tillage," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236090, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:2:p:273-:d:746778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.