Hedging via Perpetual Derivatives: Trinomial Option Pricing and Implied Parameter Surface Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- W. Brent Lindquist & Svetlozar T. Rachev, 2025. "Alternatives to classical option pricing," Annals of Operations Research, Springer, vol. 346(1), pages 489-509, March.
- Boyle, Phelim P & Evnine, Jeremy & Gibbs, Stephen, 1989. "Numerical Evaluation of Multivariate Contingent Claims," The Review of Financial Studies, Society for Financial Studies, vol. 2(2), pages 241-250.
- Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
- Boyle, Phelim P., 1988. "A Lattice Framework for Option Pricing with Two State Variables," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(1), pages 1-12, March.
- Dietmar Leisen & Matthias Reimer, 1996. "Binomial models for option valuation - examining and improving convergence," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(4), pages 319-346.
- Yuan Hu & Abootaleb Shirvani & W. Brent Lindquist & Frank J. Fabozzi & Svetlozar T. Rachev, 2020. "Option Pricing Incorporating Factor Dynamics in Complete Markets," JRFM, MDPI, vol. 13(12), pages 1-33, December.
- Yuan Hu & Abootaleb Shirvani & W. Brent Lindquist & Frank J. Fabozzi & Svetlozar T. Rachev, 2020. "Option Pricing Incorporating Factor Dynamics in Complete Markets," Papers 2011.08343, arXiv.org.
- Josheski Dushko & Apostolov Mico, 2020. "A Review of the Binomial and Trinomial Models for Option Pricing and their Convergence to the Black-Scholes Model Determined Option Prices," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 24(2), pages 53-85, June.
- Jiun Hong Chan & Mark Joshi & Robert Tang & Chao Yang, 2009. "Trinomial or binomial: Accelerating American put option price on trees," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(9), pages 826-839, September.
- Kim, Young Shin & Stoyanov, Stoyan & Rachev, Svetlozar & Fabozzi, Frank J., 2019.
"Enhancing binomial and trinomial equity option pricing models,"
Finance Research Letters, Elsevier, vol. 28(C), pages 185-190.
- Yong Shin Kim & Stoyan Stoyanov & Svetlozar Rachev & Frank J. Fabozzi, 2017. "Enhancing Binomial and Trinomial Equity Option Pricing Models," Papers 1712.03566, arXiv.org.
- Yisong Tian, 1993. "A modified lattice approach to option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(5), pages 563-577, August.
- Ionuţ Florescu & Frederi Viens, 2008. "Stochastic Volatility: Option Pricing using a Multinomial Recombining Tree," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(2), pages 151-181.
- Madan, Dilip B & Milne, Frank & Shefrin, Hersh, 1989.
"The Multinomial Option Pricing Model and Its Brownian and Poisson Limits,"
The Review of Financial Studies, Society for Financial Studies, vol. 2(2), pages 251-265.
- Dilip B. Madan & Frank Milne & Hersh Shefrin, 1990. "The Multinomial Option Pricing Model And Its Brownian And Poisson Limits," Working Paper 1162, Economics Department, Queen's University.
- Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
- Yuan Hu & Abootaleb Shirvani & W. Brent Lindquist & Frank J. Fabozzi & Svetlozar T. Rachev, 2020. "Option Pricing Incorporating Factor Dynamics in Complete Markets," Papers 2011.08343, arXiv.org.
- Yuan Hu & Abootaleb Shirvani & W. Brent Lindquist & Frank J. Fabozzi & Svetlozar T. Rachev, 2020. "Option Pricing Incorporating Factor Dynamics in Complete Markets," JRFM, MDPI, vol. 13(12), pages 1-33, December.
- Josheski Dushko & Apostolov Mico, 2020. "A Review of the Binomial and Trinomial Models for Option Pricing and their Convergence to the Black-Scholes Model Determined Option Prices," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 24(2), pages 53-85, June.
- Yuan Hu & W. Brent Lindquist & Svetlozar T. Rachev & Frank J. Fabozzi, 2023. "Option pricing using a skew random walk pricing tree," Papers 2303.17014, arXiv.org.
- Hu, Yuan & Lindquist, W. Brent & Rachev, Svetlozar T. & Shirvani, Abootaleb & Fabozzi, Frank J., 2022. "Market complete option valuation using a Jarrow-Rudd pricing tree with skewness and kurtosis," Journal of Economic Dynamics and Control, Elsevier, vol. 137(C).
- Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
- Davide Lauria & W. Brent Lindquist & Svetlozar T. Rachev & Yuan Hu, 2023. "Unifying Market Microstructure and Dynamic Asset Pricing," Papers 2304.02356, arXiv.org, revised Feb 2024.
- Zdenìk Zmeškal, 2008. "Application of the American Real Flexible Switch Options Methodology A Generalized Approach," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 58(05-06), pages 261-275, August.
- Ghafarian, Bahareh & Hanafizadeh, Payam & Qahi, Amir Hossein Mortazavi, 2018. "Applying Greek letters to robust option price modeling by binomial-tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 632-639.
- Andrea Gamba & Lenos Trigeorgis, 2007. "An Improved Binomial Lattice Method for Multi-Dimensional Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 453-475.
- Ting Chen & Mark Joshi, 2012. "Truncation and acceleration of the Tian tree for the pricing of American put options," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1695-1708, November.
- Yen Thuan Trinh & Bernard Hanzon, 2022. "Option Pricing and CVA Calculations using the Monte Carlo-Tree (MC-Tree) Method," Papers 2202.00785, arXiv.org.
- Guillaume Leduc & Merima Nurkanovic Hot, 2020. "Joshi’s Split Tree for Option Pricing," Risks, MDPI, vol. 8(3), pages 1-26, August.
- Vladislav Kargin, 2005.
"Lattice Option Pricing By Multidimensional Interpolation,"
Mathematical Finance, Wiley Blackwell, vol. 15(4), pages 635-647, October.
- Vladislav Kargin, 2003. "Lattice Option Pricing By Multidimensional Interpolation," Finance 0309003, University Library of Munich, Germany, revised 29 Oct 2004.
- Luenberger, David G., 1998. "Products of trees for investment analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1403-1417, August.
- Yuan Hu & Abootaleb Shirvani & W. Brent Lindquist & Frank J. Fabozzi & Svetlozar T. Rachev, 2021. "Market Complete Option Valuation using a Jarrow-Rudd Pricing Tree with Skewness and Kurtosis," Papers 2106.09128, arXiv.org.
- Yuan Hu & W. Brent Lindquist & Svetlozar T. Rachev & Frank J. Fabozzi, 2024. "Option Pricing Using a Skew Random Walk Binary Tree," JRFM, MDPI, vol. 17(4), pages 1-29, March.
- Dong Zou & Pu Gong, 2017. "A Lattice Framework with Smooth Convergence for Pricing Real Estate Derivatives with Stochastic Interest Rate," The Journal of Real Estate Finance and Economics, Springer, vol. 55(2), pages 242-263, August.
- Zmeskal, Zdenek, 2010. "Generalised soft binomial American real option pricing model (fuzzy-stochastic approach)," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1096-1103, December.
More about this item
Keywords
trinomial tree; option pricing; perpetual derivative; implied parameter value;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:18:y:2025:i:4:p:192-:d:1626423. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.