IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v8y2020i3p81-d393079.html
   My bibliography  Save this article

Joshi’s Split Tree for Option Pricing

Author

Listed:
  • Guillaume Leduc

    (Department of Mathematics, American University of Sharjah, P.O. Box 26666, Sharjah, UAE)

  • Merima Nurkanovic Hot

    (Department of Mathematics, University of Kaiserslautern, 67653 Kaiserslautern, Germany)

Abstract

In a thorough study of binomial trees, Joshi introduced the split tree as a two-phase binomial tree designed to minimize oscillations, and demonstrated empirically its outstanding performance when applied to pricing American put options. Here we introduce a “flexible” version of Joshi’s tree, and develop the corresponding convergence theory in the European case: we find a closed form formula for the coefficients of 1 / n and 1 / n 3 / 2 in the expansion of the error. Then we define several optimized versions of the tree, and find closed form formulae for the parameters of these optimal variants. In a numerical study, we found that in the American case, an optimized variant of the tree significantly improved the performance of Joshi’s original split tree.

Suggested Citation

  • Guillaume Leduc & Merima Nurkanovic Hot, 2020. "Joshi’s Split Tree for Option Pricing," Risks, MDPI, vol. 8(3), pages 1-26, August.
  • Handle: RePEc:gam:jrisks:v:8:y:2020:i:3:p:81-:d:393079
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/8/3/81/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/8/3/81/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ralf Korn & Stefanie Müller, 2013. "The optimal-drift model: an accelerated binomial scheme," Finance and Stochastics, Springer, vol. 17(1), pages 135-160, January.
    2. Imme van den Berg, 2000. "Principles of Infinitesimal Stochastic and Financial Analysis," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 4468.
    3. Alona Bock & Ralf Korn, 2016. "Improving Convergence of Binomial Schemes and the Edgeworth Expansion," Risks, MDPI, vol. 4(2), pages 1-22, May.
    4. Leduc, Guillaume, 2012. "European Option General First Order Error Formula," MPRA Paper 42015, University Library of Munich, Germany, revised 01 Oct 2012.
    5. Dietmar Leisen & Matthias Reimer, 1996. "Binomial models for option valuation - examining and improving convergence," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(4), pages 319-346.
    6. Mark Joshi & Mike Staunton, 2012. "On the analytical/numerical pricing of American put options against binomial tree prices," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 17-20, December.
    7. Mark Joshi, 2009. "Achieving smooth asymptotics for the prices of European options in binomial trees," Quantitative Finance, Taylor & Francis Journals, vol. 9(2), pages 171-176.
    8. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," The Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-1250.
    9. Damien Lamberton, 1993. "Convergence of the Critical Price In the Approximation of American Options," Mathematical Finance, Wiley Blackwell, vol. 3(2), pages 179-190, April.
    10. Carbone, Raffaella, 2004. "Binomial approximation of Brownian motion and its maximum," Statistics & Probability Letters, Elsevier, vol. 69(3), pages 271-285, September.
    11. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    12. Trigeorgis, Lenos, 1991. "A Log-Transformed Binomial Numerical Analysis Method for Valuing Complex Multi-Option Investments," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(3), pages 309-326, September.
    13. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    14. Antonella Lomoro & Giorgio Mossa & Roberta Pellegrino & Luigi Ranieri, 2020. "Optimizing Risk Allocation in Public-Private Partnership Projects by Project Finance Contracts. The Case of Put-or-Pay Contract for Stranded Posidonia Disposal in the Municipality of Bari," Sustainability, MDPI, vol. 12(3), pages 1-18, January.
    15. Karl Grosse-Erdmann & Fabien Heuwelyckx, 2016. "The pricing of lookback options and binomial approximation," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(1), pages 33-67, April.
    16. Fabien Heuwelyckx, 2014. "Convergence Of European Lookback Options With Floating Strike In The Binomial Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-24.
    17. Jiun Hong Chan & Mark Joshi & Robert Tang & Chao Yang, 2009. "Trinomial or binomial: Accelerating American put option price on trees," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(9), pages 826-839, September.
    18. Hull, John & White, Alan, 1988. "The Use of the Control Variate Technique in Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(3), pages 237-251, September.
    19. Lo-Bin Chang & Ken Palmer, 2007. "Smooth convergence in the binomial model," Finance and Stochastics, Springer, vol. 11(1), pages 91-105, January.
    20. Yisong “Sam” Tian, 1999. "A flexible binomial option pricing model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(7), pages 817-843, October.
    21. Yisong Tian, 1993. "A modified lattice approach to option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(5), pages 563-577, August.
    22. Ting Chen & Mark Joshi, 2012. "Truncation and acceleration of the Tian tree for the pricing of American put options," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1695-1708, November.
    23. Francine Diener & MARC Diener, 2004. "Asymptotics of the price oscillations of a European call option in a tree model," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 271-293, April.
    24. Damien Lamberton, 2018. "On the binomial approximation of the American put," Papers 1802.05614, arXiv.org, revised Dec 2018.
    25. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Christophe Breton & Youssef El-Khatib & Jun Fan & Nicolas Privault, 2021. "A q-binomial extension of the CRR asset pricing model," Papers 2104.10163, arXiv.org, revised Feb 2023.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Alona Bock & Ralf Korn, 2016. "Improving Convergence of Binomial Schemes and the Edgeworth Expansion," Risks, MDPI, vol. 4(2), pages 1-22, May.
    4. Andrea Gamba & Lenos Trigeorgis, 2007. "An Improved Binomial Lattice Method for Multi-Dimensional Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 453-475.
    5. San-Lin Chung & Pai-Ta Shih, 2007. "Generalized Cox-Ross-Rubinstein Binomial Models," Management Science, INFORMS, vol. 53(3), pages 508-520, March.
    6. Ting Chen & Mark Joshi, 2012. "Truncation and acceleration of the Tian tree for the pricing of American put options," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1695-1708, November.
    7. San-Lin Chung & Mark Shackleton, 2005. "On the use and improvement of Hull and White's control variate technique," Applied Financial Economics, Taylor & Francis Journals, vol. 15(16), pages 1171-1179.
    8. Qianru Shang & Brian Byrne, 2021. "American option pricing: Optimal Lattice models and multidimensional efficiency tests," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 514-535, April.
    9. Arturo Leccadito & Pietro Toscano & Radu S. Tunaru, 2012. "Hermite Binomial Trees: A Novel Technique For Derivatives Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1-36.
    10. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    11. Dong Zou & Pu Gong, 2017. "A Lattice Framework with Smooth Convergence for Pricing Real Estate Derivatives with Stochastic Interest Rate," The Journal of Real Estate Finance and Economics, Springer, vol. 55(2), pages 242-263, August.
    12. Kyoung-Sook Moon & Hongjoong Kim, 2013. "A multi-dimensional local average lattice method for multi-asset models," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 873-884, May.
    13. Joseph Y. J. Chow & Amelia C. Regan, 2011. "Real Option Pricing of Network Design Investments," Transportation Science, INFORMS, vol. 45(1), pages 50-63, February.
    14. Andrea Gamba & Nicola Fusari, 2009. "Valuing Modularity as a Real Option," Management Science, INFORMS, vol. 55(11), pages 1877-1896, November.
    15. Gambaro, Anna Maria & Kyriakou, Ioannis & Fusai, Gianluca, 2020. "General lattice methods for arithmetic Asian options," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1185-1199.
    16. In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
    17. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    18. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    19. Garcia, Diego, 2003. "Convergence and Biases of Monte Carlo estimates of American option prices using a parametric exercise rule," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1855-1879, August.
    20. Mark Joshi & Mike Staunton, 2012. "On the analytical/numerical pricing of American put options against binomial tree prices," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 17-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:8:y:2020:i:3:p:81-:d:393079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.