IDEAS home Printed from
   My bibliography  Save this article

Stochastic Volatility: Option Pricing using a Multinomial Recombining Tree


  • Ionuţ Florescu
  • Frederi Viens


The problem of option pricing is treated using the Stochastic Volatility (SV) model: the volatility of the underlying asset is a function of an exogenous stochastic process, typically assumed to be mean-reverting. Assuming that only discrete past stock information is available, an interacting particle stochastic filtering algorithm due to Del Moral et al. (Del Moral et al., 2001) is adapted to estimate the SV, and a quadrinomial tree is constructed which samples volatilities from the SV filter's empirical measure approximation at time 0. Proofs of convergence of the tree to continuous-time SV models are provided. Classical arbitrage-free option pricing is performed on the tree, and provides answers that are close to market prices of options on the SP500 or on blue-chip stocks. Results obtained here are compared with those from non-random volatility models, and from models which continue to estimate volatility after time 0. It is shown precisely how to calibrate the incomplete market, choosing a specific martingale measure, by using a benchmark option.

Suggested Citation

  • Ionuţ Florescu & Frederi Viens, 2008. "Stochastic Volatility: Option Pricing using a Multinomial Recombining Tree," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(2), pages 151-181.
  • Handle: RePEc:taf:apmtfi:v:15:y:2008:i:2:p:151-181
    DOI: 10.1080/13504860701596745

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Bowei Chen & Jun Wang, 2014. "A lattice framework for pricing display advertisement options with the stochastic volatility underlying model," Papers 1409.0697,, revised Dec 2015.
    2. Ha-Young Kim & Frederi Viens, 2012. "Portfolio optimization in discrete time with proportional transaction costs under stochastic volatility," Annals of Finance, Springer, vol. 8(2), pages 405-425, May.
    3. repec:taf:oaefxx:v:5:y:2017:i:1:p:1358894 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:15:y:2008:i:2:p:151-181. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.