IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Stochastic Volatility: Option Pricing using a Multinomial Recombining Tree

Listed author(s):
  • Ionuţ Florescu
  • Frederi Viens
Registered author(s):

    The problem of option pricing is treated using the Stochastic Volatility (SV) model: the volatility of the underlying asset is a function of an exogenous stochastic process, typically assumed to be mean-reverting. Assuming that only discrete past stock information is available, an interacting particle stochastic filtering algorithm due to Del Moral et al. (Del Moral et al., 2001) is adapted to estimate the SV, and a quadrinomial tree is constructed which samples volatilities from the SV filter's empirical measure approximation at time 0. Proofs of convergence of the tree to continuous-time SV models are provided. Classical arbitrage-free option pricing is performed on the tree, and provides answers that are close to market prices of options on the SP500 or on blue-chip stocks. Results obtained here are compared with those from non-random volatility models, and from models which continue to estimate volatility after time 0. It is shown precisely how to calibrate the incomplete market, choosing a specific martingale measure, by using a benchmark option.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Applied Mathematical Finance.

    Volume (Year): 15 (2008)
    Issue (Month): 2 ()
    Pages: 151-181

    in new window

    Handle: RePEc:taf:apmtfi:v:15:y:2008:i:2:p:151-181
    DOI: 10.1080/13504860701596745
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:15:y:2008:i:2:p:151-181. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.