IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i6p5022-d1095182.html
   My bibliography  Save this article

The Effects of Environmental Tax Revenue on Sustainable Development in China

Author

Listed:
  • Bingjie Wang

    (School of Public Finance and Taxation, Southwestern University of Finance and Economics, Chengdu 610074, China)

  • Chong Xu

    (School of Public Administration, Southwestern University of Finance and Economics, Chengdu 610074, China)

  • Ding Li

    (School of Public Administration, Southwestern University of Finance and Economics, Chengdu 610074, China)

  • Yinyin Wu

    (School of Public Administration, Southwestern University of Finance and Economics, Chengdu 610074, China)

  • Yaqi Zhang

    (Business School, The University of Hong Kong, Hong Kong, China)

Abstract

Despite extensive studies focused on environmental tax revenue (ETR) on the driver and linkage with socioeconomic variables over time, an in-depth investigation on the spatiotemporal driver and intrinsic characteristics (e.g., convergence and complex network) is in need, providing valuable information on formulating better environmental tax policy towards sustainable development. Therefore, the study comprehensively analyzed the spatiotemporal driver, convergence trend, and complex network of provincial ETR in a case of China over 2000–2019 by using temporal and spatial logarithmic mean Divisia index models (LMDI), convergence models, and social network analysis, respectively. We found that, first, two convergence clubs of ETR for China’s provinces over the period were found. Second, GDP per capita and tax intensity were the positive and negative drivers contributing the increase in ETR. Third, within differences in tax intensity and GDP per capita, as well as the differences in population and GDP per capita, were the main drivers widening the overall ETR gap. Fourth, the original hierarchical ETR spatial correlation structure has changed, while provinces exhibited certain degrees of heterogeneity in terms of ETR spatial association network. The study highlights that ETR plays a significant role in maintaining sustainable development and thus suggests that more importance of environmental tax policies at various levels should be attached.

Suggested Citation

  • Bingjie Wang & Chong Xu & Ding Li & Yinyin Wu & Yaqi Zhang, 2023. "The Effects of Environmental Tax Revenue on Sustainable Development in China," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:6:p:5022-:d:1095182
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/6/5022/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/6/5022/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    2. Zhai, Tianchang & Li, Lei & Wang, Jingjing & Si, Wei, 2022. "Will the consumption tax on sugar-sweetened beverages help promote healthy beverage consumption? Evidence from urban China," China Economic Review, Elsevier, vol. 73(C).
    3. Concetta Castiglione & Davide Infante & Janna Smirnova, 2018. "Non-trivial Factors as Determinants of the Environmental Taxation Revenues in 27 EU Countries," Economies, MDPI, vol. 6(1), pages 1-20, January.
    4. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    5. Peter C. B. Phillips & Donggyu Sul, 2009. "Economic transition and growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1153-1185.
    6. Chen, Jiandong & Xu, Chong & Huang, Shuo & Shen, Zhiyang & Song, Malin & Wang, Shiqi, 2022. "Adjusted carbon intensity in China: Trend, driver, and network," Energy, Elsevier, vol. 251(C).
    7. Bashir, Muhammad Farhan & MA, Benjiang & Shahbaz, Muhammad & Shahzad, Umer & Vo, Xuan Vinh, 2021. "Unveiling the heterogeneous impacts of environmental taxes on energy consumption and energy intensity: Empirical evidence from OECD countries," Energy, Elsevier, vol. 226(C).
    8. Xu, Chong & Wang, Bingjie & Chen, Jiandong & Shen, Zhiyang & Song, Malin & An, Jiafu, 2022. "Carbon inequality in China: Novel drivers and policy driven scenario analysis," Energy Policy, Elsevier, vol. 170(C).
    9. Peter C. B. Phillips & Donggyu Sul, 2007. "Transition Modeling and Econometric Convergence Tests," Econometrica, Econometric Society, vol. 75(6), pages 1771-1855, November.
    10. Jan Jacobs & Jenny Ligthart & Hendrik Vrijburg, 2010. "Consumption tax competition among governments: Evidence from the United States," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 17(3), pages 271-294, June.
    11. Cole, M.A. & Rayner, A.J. & Bates, J.M., 1997. "The environmental Kuznets curve: an empirical analysis," Environment and Development Economics, Cambridge University Press, vol. 2(4), pages 401-416, November.
    12. Xu, Chong, 2023. "Towards balanced low-carbon development: Driver and complex network of urban-rural energy-carbon performance gap in China," Applied Energy, Elsevier, vol. 333(C).
    13. Chen, Jiandong & Xu, Chong & Song, Malin & Deng, Xiangzheng & Shen, Zhiyang, 2022. "Towards sustainable development: Distribution effect of carbon-food nexus in Chinese cities," Applied Energy, Elsevier, vol. 309(C).
    14. Yan, Zheming & Du, Keru & Yang, Zhiming & Deng, Min, 2017. "Convergence or divergence? Understanding the global development trend of low-carbon technologies," Energy Policy, Elsevier, vol. 109(C), pages 499-509.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jiandong & Xu, Chong & Wang, Yuzhi & Li, Ding & Song, Malin, 2021. "Carbon neutrality based on vegetation carbon sequestration for China's cities and counties: Trend, inequality and driver," Resources Policy, Elsevier, vol. 74(C).
    2. Xu, Chong, 2023. "Towards balanced low-carbon development: Driver and complex network of urban-rural energy-carbon performance gap in China," Applied Energy, Elsevier, vol. 333(C).
    3. Nghiem, Son & Tran, Bach & Afoakwah, Clifford & Byrnes, Joshua & Scuffham, Paul, 2021. "Wealthy, healthy and green: Are we there yet?," World Development, Elsevier, vol. 147(C).
    4. Wang, Yiming & Zhang, Pei & Huang, Dake & Cai, Changda, 2014. "Convergence behavior of carbon dioxide emissions in China," Economic Modelling, Elsevier, vol. 43(C), pages 75-80.
    5. Mar'ia Jos'e Presno & Manuel Landajo & Paula Fern'andez Gonz'alez, 2024. "GHG emissions in the EU-28. A multilevel club convergence study of the Emission Trading System and Effort Sharing Decision mechanisms," Papers 2402.01784, arXiv.org, revised Feb 2024.
    6. Ekaterini Panopoulou & Theologos Pantelidis, 2009. "Club Convergence in Carbon Dioxide Emissions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 44(1), pages 47-70, September.
    7. Kounetas, Konstantinos E. & Polemis, Michael L. & Tzeremes, Nickolaos G., 2021. "Measurement of eco-efficiency and convergence: Evidence from a non-parametric frontier analysis," European Journal of Operational Research, Elsevier, vol. 291(1), pages 365-378.
    8. Ivanovski, Kris & Awaworyi Churchill, Sefa, 2020. "Convergence and determinants of greenhouse gas emissions in Australia: A regional analysis," Energy Economics, Elsevier, vol. 92(C).
    9. Emrah Kocak & Hayriye Hilal Baglitas, 2022. "The path to sustainable municipal solid waste management: Do human development, energy efficiency, and income inequality matter?," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1947-1962, December.
    10. Nicole Grunewald & Inmaculada Martínez-Zarzoso, 2009. "Driving Factors of Carbon Dioxide Emissions and the Impact from Kyoto Protocol," Ibero America Institute for Econ. Research (IAI) Discussion Papers 190, Ibero-America Institute for Economic Research.
    11. Mihály Borsi & Norbert Metiu, 2015. "The evolution of economic convergence in the European Union," Empirical Economics, Springer, vol. 48(2), pages 657-681, March.
    12. George Halkos & Iacovos Psarianos, 2016. "Exploring the effect of including the environment in the neoclassical growth model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(3), pages 339-358, July.
    13. Daniel Fiorino, 2011. "Explaining national environmental performance: approaches, evidence, and implications," Policy Sciences, Springer;Society of Policy Sciences, vol. 44(4), pages 367-389, November.
    14. Saidi Kais & Ben Mbarek Mounir, 2017. "Causal interactions between environmental degradation, renewable energy, nuclear energy and real GDP: a dynamic panel data approach," Environment Systems and Decisions, Springer, vol. 37(1), pages 51-67, March.
    15. Christopoulos, Konstantinos & Eleftheriou, Konstantinos, 2020. "Premature mortality in the US: A convergence study," Social Science & Medicine, Elsevier, vol. 258(C).
    16. Carmen Díaz-Roldán & María del Carmen Ramos-Herrera, 2021. "Innovations and ICT: Do They Favour Economic Growth and Environmental Quality?," Energies, MDPI, vol. 14(5), pages 1-17, March.
    17. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    18. Pei-Ing Wu & Je-Liang Liou & Hung-Yi Chang, 2015. "Alternative exploration of EKC for $$\hbox {CO}_{2}$$ CO 2 emissions: inclusion of meta-technical ratio in quantile regression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(1), pages 57-73, January.
    19. Thomas Longden, 2014. "Going Forward by Looking Backwards on the Environmental Kuznets Curve: an Analysis of CFCs, CO2 and the Montreal and Kyoto Protocols," Working Papers 2014.74, Fondazione Eni Enrico Mattei.
    20. Delgado Narro, Augusto Ricardo, 2020. "The Process of Convergence among the Japanese Prefectures: 1955 - 2012," MPRA Paper 100361, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:6:p:5022-:d:1095182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.