IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2022i1p466-d1017077.html
   My bibliography  Save this article

Suicide Possibility Scale Detection via Sina Weibo Analytics: Preliminary Results

Author

Listed:
  • Yun Gu

    (School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101408, China)

  • Deyuan Chen

    (School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101408, China)

  • Xiaoqian Liu

    (Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
    Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Suicide, as an increasingly prominent social problem, has attracted widespread social attention in the mental health field. Traditional suicide clinical assessment and risk questionnaires lack timeliness and proactivity, and high-risk groups often conceal their intentions, which is not conducive to early suicide prevention. In this study, we used machine-learning algorithms to extract text features from Sina Weibo data and built a suicide risk-prediction model to predict four dimensions of the Suicide Possibility Scale—hopelessness, suicidal ideation, negative self-evaluation, and hostility—all with model validity of 0.34 or higher. Through this method, we can detect the symptoms of suicidal ideation in a more detailed way and improve the proactiveness and accuracy of suicide risk prevention and control.

Suggested Citation

  • Yun Gu & Deyuan Chen & Xiaoqian Liu, 2022. "Suicide Possibility Scale Detection via Sina Weibo Analytics: Preliminary Results," IJERPH, MDPI, vol. 20(1), pages 1-11, December.
  • Handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:466-:d:1017077
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/1/466/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/1/466/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jingfang Liu & Mengshi Shi & Huihong Jiang, 2022. "Detecting Suicidal Ideation in Social Media: An Ensemble Method Based on Feature Fusion," IJERPH, MDPI, vol. 19(13), pages 1-13, July.
    2. Yu Zhang & Feng Yu, 2018. "Which Socio-Economic Indicators Influence Collective Morality? Big Data Analysis on Online Chinese Social Media," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(4), pages 792-800, March.
    3. Michal Ptaszynski & Monika Zasko-Zielinska & Michal Marcinczuk & Gniewosz Leliwa & Marcin Fortuna & Kamil Soliwoda & Ida Dziublewska & Olimpia Hubert & Pawel Skrzek & Jan Piesiewicz & Paula Karbowska , 2021. "Looking for Razors and Needles in a Haystack: Multifaceted Analysis of Suicidal Declarations on Social Media—A Pragmalinguistic Approach," IJERPH, MDPI, vol. 18(22), pages 1-49, November.
    4. Kaplan, Andreas M. & Haenlein, Michael, 2010. "Users of the world, unite! The challenges and opportunities of Social Media," Business Horizons, Elsevier, vol. 53(1), pages 59-68, January.
    5. Shaoxiong Ji & Celina Ping Yu & Sai-fu Fung & Shirui Pan & Guodong Long, 2018. "Supervised Learning for Suicidal Ideation Detection in Online User Content," Complexity, Hindawi, vol. 2018, pages 1-10, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Pan & Xianbin Wang & Wenwei Zhou & Bowen Hang & Liwen Guo, 2023. "Linguistic Analysis for Identifying Depression and Subsequent Suicidal Ideation on Weibo: Machine Learning Approaches," IJERPH, MDPI, vol. 20(3), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Pan & Xianbin Wang & Wenwei Zhou & Bowen Hang & Liwen Guo, 2023. "Linguistic Analysis for Identifying Depression and Subsequent Suicidal Ideation on Weibo: Machine Learning Approaches," IJERPH, MDPI, vol. 20(3), pages 1-12, February.
    2. Schmidt, Christoph G. & Wuttke, David A. & Heese, H. Sebastian & Wagner, Stephan M., 2023. "Antecedents of public reactions to supply chain glitches," International Journal of Production Economics, Elsevier, vol. 259(C).
    3. Mahan, Joseph E. & Seo, Won Jae & Jordan, Jeremy S. & Funk, Daniel, 2015. "Exploring the impact of social networking sites on running involvement, running behavior, and social life satisfaction," Sport Management Review, Elsevier, vol. 18(2), pages 182-192.
    4. Molina, Arturo & Fernández, Alejandra C. & Gómez, Mar & Aranda, Evangelina, 2017. "Differences in the city branding of European capitals based on online vs. offline sources of information," Tourism Management, Elsevier, vol. 58(C), pages 28-39.
    5. Hassan Danaeefard & Ali Farazmand & Akram Dastyari, 2023. "The Iranian Coronavirus Pandemic (COVID-9) Crisismanship: Understanding the Contributions of National Culture, Media, Technology and Economic System," Public Organization Review, Springer, vol. 23(4), pages 1661-1682, December.
    6. Richey, Michelle & Ravishankar, M.N., 2019. "The role of frames and cultural toolkits in establishing new connections for social media innovation," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 325-333.
    7. Fathey Mohammed & Nabil Hasan Al-Kumaim & Ahmed Ibrahim Alzahrani & Yousef Fazea, 2023. "The Impact of Social Media Shared Health Content on Protective Behavior against COVID-19," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    8. Drummond, Conor & O'Toole, Thomas & McGrath, Helen, 2022. "Social Media resourcing of an entrepreneurial firm network: Collaborative mobilisation processes," Journal of Business Research, Elsevier, vol. 145(C), pages 171-187.
    9. Davide Giacomini & Paola Zola & Diego Paredi & Mario Mazzoleni, 2020. "Environmental disclosure and stakeholder engagement via social media: State of the art and potential in public utilities," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(4), pages 1552-1564, July.
    10. repec:zib:zbmbmj:v:2:y:2023:i:2:p:114-123 is not listed on IDEAS
    11. Domenico CONSOLI, 2017. "The Use of Social Media and E-Commerce: a Winning Strategy for Small Businesses," North Economic Review, Technical University of Cluj Napoca, Department of Economics and Physics, vol. 1(1), pages 109-119, October.
    12. Maximilian ROBU, 2013. "A New Classification Of Smes In The Digital Economy Context," SEA - Practical Application of Science, Romanian Foundation for Business Intelligence, Editorial Department, issue 1, pages 150-155, June.
    13. Schejter, Amit M. & Tirosh, Noam, 2015. "“Seek the meek, seek the just”: Social media and social justice," Telecommunications Policy, Elsevier, vol. 39(9), pages 796-803.
    14. Ma, Jie & Tse, Ying Kei & Wang, Xiaojun & Zhang, Minhao, 2019. "Examining customer perception and behaviour through social media research – An empirical study of the United Airlines overbooking crisis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 192-205.
    15. Martín-Rojas, Rodrigo & Garrido-Moreno, Aurora & García-Morales, Víctor J., 2023. "Social media use, corporate entrepreneurship and organizational resilience: A recipe for SMEs success in a post-Covid scenario," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    16. Daas, Piet J.H. & Puts, Marco J.H., 2014. "Social media sentiment and consumer confidence," Statistics Paper Series 5, European Central Bank.
    17. Stefano Di Lauro & Aizhan Tursunbayeva & Gilda Antonelli & Marcello Martinez, 2021. "Organizational and Corporate Identity on Social Media: A Literature Review," International Journal of Business and Management, Canadian Center of Science and Education, vol. 15(4), pages 1-53, July.
    18. Vasile-Daniel Păvăloaia & Elena-Mădălina Teodor & Doina Fotache & Magdalena Danileţ, 2019. "Opinion Mining on Social Media Data: Sentiment Analysis of User Preferences," Sustainability, MDPI, vol. 11(16), pages 1-21, August.
    19. Zhepeng Li & Xiao Fang & Xue Bai & Olivia R. Liu Sheng, 2017. "Utility-Based Link Recommendation for Online Social Networks," Management Science, INFORMS, vol. 63(6), pages 1938-1952, June.
    20. Ying Guo & Xiantao Xiao, 2022. "Author-level altmetrics for the evaluation of Chinese scholars," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 973-990, February.
    21. Irina Maiorescu & Mihaela Bucur & Bogdan Georgescu & Daniel Moise & Vasile Alecsandru Strat & Ion Daniel Zgură, 2020. "Social Media and IOT Wearables in Developing Marketing Strategies. Do SMEs Differ From Large Enterprises?," Sustainability, MDPI, vol. 12(18), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:466-:d:1017077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.