IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i18p11835-d919270.html
   My bibliography  Save this article

Urban–Rural Fringe Long-Term Sequence Monitoring Based on a Comparative Study on DMSP-OLS and NPP-VIIRS Nighttime Light Data: A Case Study of Shenyang, China

Author

Listed:
  • Tianyi Zeng

    (Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, School of Architecture, Harbin Institute of Technology, Harbin 150001, China)

  • Hong Jin

    (Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, School of Architecture, Harbin Institute of Technology, Harbin 150001, China)

  • Zhifei Geng

    (Business School, Ningbo University, Ningbo 315211, China)

  • Zihang Kang

    (Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, School of Architecture, Harbin Institute of Technology, Harbin 150001, China)

  • Zichen Zhang

    (Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, School of Architecture, Harbin Institute of Technology, Harbin 150001, China)

Abstract

Urban–rural fringes, as special zones where urban and rural areas meet, are the most sensitive areas in the urbanization process. The quantitative identification of urban–rural fringes is the basis for studying the social structure, landscape pattern, and development gradient of fringes, and is also a prerequisite for quantitative analyses of the ecological effects of urbanization. However, few studies have been conducted to compare the identification accuracy of The US Air Force Defence Meteorological Satellite Program’s (DMSP) and the Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime light data from the same year, subsequently enabling long time series monitoring of the urban–rural fringe. Therefore, in this study, taking Shenyang as an example, a K-means algorithm was used to delineate and compare the urban–rural fringe identification results of DMSP and VIIRS nighttime light data for 2013 and analyzed the changes between 2013 and 2020. The results of the study showed a high degree of overlap between the two types of data in 2013, with the overlap accounting for 75% of the VIIRS data identification results. Furthermore, the VIIRS identified more urban and rural details than the DMSP data. The area of the urban–rural fringe in Shenyang increased from 1872 km 2 to 2537 km 2 , with the growth direction mainly concentrated in the southwest. This study helps to promote the study of urban–rural fringe identification from static identification to dynamic tracking, and from spatial identification to temporal identification. The research results can be applied to the comparative analysis of urban–rural differences and the study of the ecological and environmental effects of urbanization.

Suggested Citation

  • Tianyi Zeng & Hong Jin & Zhifei Geng & Zihang Kang & Zichen Zhang, 2022. "Urban–Rural Fringe Long-Term Sequence Monitoring Based on a Comparative Study on DMSP-OLS and NPP-VIIRS Nighttime Light Data: A Case Study of Shenyang, China," IJERPH, MDPI, vol. 19(18), pages 1-18, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11835-:d:919270
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/18/11835/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/18/11835/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He Sun & Xueming Li & Yingying Guan & Shenzhen Tian & He Liu, 2021. "The Evolution of the Urban Residential Space Structure and Driving Forces in the Megacity—A Case Study of Shenyang City," Land, MDPI, vol. 10(10), pages 1-19, October.
    2. Meiling Han & Martin De Jong & Zhuqing Cui & Limin Xu & Haiyan Lu & Baiqing Sun, 2018. "City Branding in China’s Northeastern Region: How Do Cities Reposition Themselves When Facing Industrial Decline and Ecological Modernization?," Sustainability, MDPI, vol. 10(1), pages 1-25, January.
    3. Duque,Juan Carlos & Lozano Gracia,Nancy & Patino,Jorge E. & Restrepo Cadavid,Paula & Velasquez,Wilson A., 2019. "Spatio-Temporal Dynamics of Urban Growth in Latin American Cities : An Analysis Using Nighttime Lights Imagery," Policy Research Working Paper Series 8702, The World Bank.
    4. Wang, Xiaoxiao & Shi, Ruiting & Zhou, Ying, 2020. "Dynamics of urban sprawl and sustainable development in China," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    5. Christopher D. Elvidge & Daniel Ziskin & Kimberly E. Baugh & Benjamin T. Tuttle & Tilottama Ghosh & Dee W. Pack & Edward H. Erwin & Mikhail Zhizhin, 2009. "A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data," Energies, MDPI, vol. 2(3), pages 1-28, August.
    6. Zhaoxin Dai & Yunfeng Hu & Guanhua Zhao, 2017. "The Suitability of Different Nighttime Light Data for GDP Estimation at Different Spatial Scales and Regional Levels," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    7. Xinghua Feng & Chunliang Xiu & Jianxin Li & Yexi Zhong, 2021. "Measuring the Evolution of Urban Resilience Based on the Exposure–Connectedness–Potential (ECP) Approach: A Case Study of Shenyang City, China," Land, MDPI, vol. 10(12), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Gibson & Susan Olivia & Geua Boe‐Gibson, 2020. "Night Lights In Economics: Sources And Uses," Journal of Economic Surveys, Wiley Blackwell, vol. 34(5), pages 955-980, December.
    2. Lionel Roger, 2018. "Blinded by the light? Heterogeneity in the luminosity-growth nexus and the African growth miracle," Discussion Papers 2018-04, University of Nottingham, CREDIT.
    3. Yunfeng Hu & Yunzhi Zhang, 2020. "Global Nighttime Light Change from 1992 to 2017: Brighter and More Uniform," Sustainability, MDPI, vol. 12(12), pages 1-17, June.
    4. Xu Yang & Xuan Zou & Xueqi Liu & Qixuan Li & Siqian Zou & Ming Li, 2023. "The Spatiotemporal Pattern and Driving Mechanism of Urban Sprawl in China’s Counties," Land, MDPI, vol. 12(3), pages 1-16, March.
    5. Tilottama Ghosh & Christopher D. Elvidge & Paul C. Sutton & Kimberly E. Baugh & Daniel Ziskin & Benjamin T. Tuttle, 2010. "Creating a Global Grid of Distributed Fossil Fuel CO 2 Emissions from Nighttime Satellite Imagery," Energies, MDPI, vol. 3(12), pages 1-19, December.
    6. Zizhan Jiang & Burrell Montz & Thomas Vogel, 2023. "Comprehensive Evaluation of Land Use Planning Alternatives Based on GIS-ANP," Land, MDPI, vol. 12(8), pages 1-21, July.
    7. Thomas Akpan Harry & Ekemini John Peter & Nsidibe Akpan Udoduk, 2022. "Environmental Impact Assessment Of Oil Producing Communities In Part Of The Niger Delta. A Case Study Of Ibeno, Ikot Abasi, Onna And Esit-Eket Local Government Area In Akwa Ibom State, Nigeria," Environmental Contaminants Reviews (ECR), Zibeline International Publishing, vol. 5(2), pages 49-56, April.
    8. Boslett, Andrew & Hill, Elaine & Ma, Lala & Zhang, Lujia, 2021. "Rural light pollution from shale gas development and associated sleep and subjective well-being," Resource and Energy Economics, Elsevier, vol. 64(C).
    9. Yaxi Gong & Xiang Ji & Yuan Zhang & Shanshan Cheng, 2023. "Spatial Vitality Evaluation and Coupling Regulation Mechanism of a Complex Ecosystem in Lixiahe Plain Based on Multi-Source Data," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    10. Xuemei Wang & Mingguo Ma, 2017. "The luminous intensity of regional ‘night-light’ output can predict the growing volume of published scientific research by ‘luminaries’ in developing countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 1005-1010, February.
    11. Andrew M. Linke & Frank D. W. Witmer & John O'Loughlin, 2012. "Space-Time Granger Analysis of the War in Iraq: A Study of Coalition and Insurgent Action-Reaction," International Interactions, Taylor & Francis Journals, vol. 38(4), pages 402-425, September.
    12. Daniela Smiraglia & Luca Salvati & Gianluca Egidi & Rosanna Salvia & Antonio Giménez-Morera & Rares Halbac-Cotoara-Zamfir, 2021. "Toward a New Urban Cycle? A Closer Look to Sprawl, Demographic Transitions and the Environment in Europe," Land, MDPI, vol. 10(2), pages 1-14, January.
    13. Juergen Bitzer & Erkan Goeren, 2018. "Foreign Aid and Subnational Development: A Grid Cell Analysis," Working Papers V-407-18, University of Oldenburg, Department of Economics, revised Mar 2018.
    14. Dawson, C.J. & Hilton, J., 2011. "Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus," Food Policy, Elsevier, vol. 36(S1), pages 14-22.
    15. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    16. Su, Yongxian & Chen, Xiuzhi & Li, Yong & Liao, Jishan & Ye, Yuyao & Zhang, Hongou & Huang, Ningsheng & Kuang, Yaoqiu, 2014. "China׳s 19-year city-level carbon emissions of energy consumptions, driving forces and regionalized mitigation guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 231-243.
    17. Xiao, Rui & Yu, Xiaoyu & Xiang, Ting & Zhang, Zhonghao & Wang, Xue & Wu, Jianguo, 2021. "Exploring the coordination between physical space expansion and social space growth of China’s urban agglomerations based on hierarchical analysis," Land Use Policy, Elsevier, vol. 109(C).
    18. Michał Myck & Mateusz Najsztub, 2020. "Implications of the Polish 1999 administrative reform for regional socio‐economic development," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 28(4), pages 559-579, October.
    19. Assem Abu Hatab & Padmaja Ravula & Swamikannu Nedumaran & Carl-Johan Lagerkvist, 2022. "Perceptions of the impacts of urban sprawl among urban and peri-urban dwellers of Hyderabad, India: a Latent class clustering analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12787-12812, November.
    20. Ch, Rafael & Martin, Diego A. & Vargas, Juan F., 2021. "Measuring the size and growth of cities using nighttime light," Journal of Urban Economics, Elsevier, vol. 125(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11835-:d:919270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.