IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i17p10905-d903903.html
   My bibliography  Save this article

The Forms, Channels and Conditions of Regional Agricultural Carbon Emission Reduction Interaction: A Provincial Perspective in China

Author

Listed:
  • Yanqiu He

    (College of Management, Sichuan Agricultural University, Chengdu 611130, China)

  • Hongchun Wang

    (College of Management, Sichuan Agricultural University, Chengdu 611130, China)

  • Rou Chen

    (College of Management, Sichuan Agricultural University, Chengdu 611130, China)

  • Shiqi Hou

    (College of Management, Sichuan Agricultural University, Chengdu 611130, China)

  • Dingde Xu

    (College of Management, Sichuan Agricultural University, Chengdu 611130, China)

Abstract

Agricultural emission reduction is a key objective associated with sustainable agricultural development and a meaningful way to slow down global warming. Based on the comprehensive estimation of agricultural carbon emissions, this study applied the traditional spatial Durbin model (SDM) to analyze the type of regional emission reduction interaction and explore whether it is a direct or an indirect interaction caused by technology spillovers. Moreover, geographic, economic, and technical weights were used to discuss the channels of emission reduction interactions. The partitioned spatial Durbin model was applied to explore the realization conditions of regional emission reduction interactions. We found that: (1) comprehensive emission reduction interactions were identified in various regions of China, including direct and indirect interactions, in which geographic and technical channels were the major pathways for direct and indirect emission reduction interactions, respectively; (2) regions with similar economic development levels are more likely to have direct interactions, whereas regions with low technical levels are more willing to follow the high-tech regions, and the benchmarking effect is noticeable; (3) emission reduction results promoted by economic cooperation may be offset by vicious economic competition between regions, and more emission reduction intervention measures should be given to regions with high economic development levels; (4) to achieve better technological cooperation, regions must have similar technology absorption capabilities and should provide full play to the driving force of technical benchmarks.

Suggested Citation

  • Yanqiu He & Hongchun Wang & Rou Chen & Shiqi Hou & Dingde Xu, 2022. "The Forms, Channels and Conditions of Regional Agricultural Carbon Emission Reduction Interaction: A Provincial Perspective in China," IJERPH, MDPI, vol. 19(17), pages 1-22, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:10905-:d:903903
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/17/10905/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/17/10905/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pellerin, Sylvain & Bamière, Laure & Angers, Denis & Béline, Fabrice & Benoit, Marc & Butault, Jean-Pierre & Chenu, Claire & Colnenne-David, Caroline & De Cara, Stéphane & Delame, Nathalie & Doreau, M, 2017. "Identifying cost-competitive greenhouse gas mitigation potential of French agriculture," Environmental Science & Policy, Elsevier, vol. 77(C), pages 130-139.
    2. J. Paul Elhorst & Sandy Fréret, 2009. "Evidence Of Political Yardstick Competition In France Using A Two‐Regime Spatial Durbin Model With Fixed Effects," Journal of Regional Science, Wiley Blackwell, vol. 49(5), pages 931-951, December.
    3. Yin, Jianhua & Zheng, Mingzheng & Chen, Jian, 2015. "The effects of environmental regulation and technical progress on CO2 Kuznets curve: An evidence from China," Energy Policy, Elsevier, vol. 77(C), pages 97-108.
    4. José A. Tapia Granados & Clive L. Spash, 2019. "Policies to Reduce CO2 Emissions: Fallacies and Evidence from the United States and California," SRE-Disc sre-disc-2019_04, Institute for Multilevel Governance and Development, Department of Socioeconomics, Vienna University of Economics and Business.
    5. Hacardiaux, Thomas & Tancrez, Jean-Sebastien, 2019. "Assessing the Environmental Benefits of Horizontal Cooperation using a Location-Inventory Model," LIDAM Reprints CORE 3088, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Marbuah, George & Amuakwa-Mensah, Franklin, 2017. "Spatial analysis of emissions in Sweden," Energy Economics, Elsevier, vol. 68(C), pages 383-394.
    7. Chakrabarti, Anindya S., 2016. "Stochastic Lotka–Volterra equations: A model of lagged diffusion of technology in an interconnected world," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 214-223.
    8. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    9. Daming You & Ke Jiang & Zhendong Li, 2018. "Optimal Coordination Strategy of Regional Vertical Emission Abatement Collaboration in a Low-Carbon Environment," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    10. Shi, Kaifang & Yu, Bailang & Zhou, Yuyu & Chen, Yun & Yang, Chengshu & Chen, Zuoqi & Wu, Jianping, 2019. "Spatiotemporal variations of CO2 emissions and their impact factors in China: A comparative analysis between the provincial and prefectural levels," Applied Energy, Elsevier, vol. 233, pages 170-181.
    11. Carley, Sanya, 2011. "Decarbonization of the U.S. electricity sector: Are state energy policy portfolios the solution?," Energy Economics, Elsevier, vol. 33(5), pages 1004-1023, September.
    12. Rios, Vicente & Gianmoena, Lisa, 2018. "Convergence in CO2 emissions: A spatial economic analysis with cross-country interactions," Energy Economics, Elsevier, vol. 75(C), pages 222-238.
    13. Jianling Jiao & Yufei Yang & Yu Bai, 2018. "The impact of inter-industry R&D technology spillover on carbon emission in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 913-929, April.
    14. Bera, Anil K. & Yoon, Mann J., 1993. "Specification Testing with Locally Misspecified Alternatives," Econometric Theory, Cambridge University Press, vol. 9(4), pages 649-658, August.
    15. Yanmei Li & Xiushan Bai, 2022. "How Can China and the Belt and Road Initiative Countries Work Together Responding to Climate Change: A Perspective on Carbon Emissions and Economic Spillover Effects," IJERPH, MDPI, vol. 19(15), pages 1-17, August.
    16. Shi, Xiangyu & Xi, Tianyang, 2018. "Race to safety: Political competition, neighborhood effects, and coal mine deaths in China," Journal of Development Economics, Elsevier, vol. 131(C), pages 79-95.
    17. Yanqiu He & Xueying Cheng & Fang Wang & Ya Cheng, 2020. "Spatial correlation of China’s agricultural greenhouse gas emissions: a technology spillover perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2561-2590, December.
    18. Zhang, Youguo, 2017. "Interregional carbon emission spillover–feedback effects in China," Energy Policy, Elsevier, vol. 100(C), pages 138-148.
    19. Xiaoliang Guan & Junbiao Zhang & Xianrong Wu & Linlin Cheng, 2018. "The Shadow Prices of Carbon Emissions in China’s Planting Industry," Sustainability, MDPI, vol. 10(3), pages 1-12, March.
    20. Yingying Zhou & Yaru Xu & Chuanzhe Liu & Zhuoqing Fang & Jiayi Guo, 2019. "Spatial Effects of Technological Progress and Financial Support on China’s Provincial Carbon Emissions," IJERPH, MDPI, vol. 16(10), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinyu Han & Jiansheng Qu & Dai Wang & Tek Narayan Maraseni, 2023. "Accounting for and Comparison of Greenhouse Gas (GHG) Emissions between Crop and Livestock Sectors in China," Land, MDPI, vol. 12(9), pages 1-18, September.
    2. Yingya Yang & Yun Tian & Xuhui Peng & Minhao Yin & Wei Wang & Haiwen Yang, 2022. "Research on Environmental Governance, Local Government Competition, and Agricultural Carbon Emissions under the Goal of Carbon Peak," Agriculture, MDPI, vol. 12(10), pages 1-17, October.
    3. Shulong Li & Zhizhang Wang, 2023. "Time, Spatial and Component Characteristics of Agricultural Carbon Emissions of China," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
    4. Guofeng Wang & Baohui Zhao & Mengqi Zhao, 2024. "Investigation into the Performance Characteristics of the Organic Dry Farming Transition and the Corresponding Impact on Carbon Emissions Reduction," Agriculture, MDPI, vol. 14(3), pages 1-20, March.
    5. Lin Zhang & Jinyan Chen & Faustino Dinis & Sha Wei & Chengzhi Cai, 2022. "Decoupling Effect, Driving Factors and Prediction Analysis of Agricultural Carbon Emission Reduction and Product Supply Guarantee in China," Sustainability, MDPI, vol. 14(24), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanqiu He & Xueying Cheng & Fang Wang & Ya Cheng, 2020. "Spatial correlation of China’s agricultural greenhouse gas emissions: a technology spillover perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2561-2590, December.
    2. Yingya Yang & Yun Tian & Xuhui Peng & Minhao Yin & Wei Wang & Haiwen Yang, 2022. "Research on Environmental Governance, Local Government Competition, and Agricultural Carbon Emissions under the Goal of Carbon Peak," Agriculture, MDPI, vol. 12(10), pages 1-17, October.
    3. Valeria Costantini & Francesco Crespi & Giovanni Marin & Elena Paglialunga, 2016. "Eco-innovation, sustainable supply chains and environmental performance in European industries," LEM Papers Series 2016/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    4. Xintao Li & Dong Feng & Jian Li & Zaisheng Zhang, 2019. "Research on the Spatial Network Characteristics and Synergetic Abatement Effect of the Carbon Emissions in Beijing–Tianjin–Hebei Urban Agglomeration," Sustainability, MDPI, vol. 11(5), pages 1-15, March.
    5. Khan, Zeeshan & Malik, Muhammad Yousaf & Latif, Kashmala & Jiao, Zhilun, 2020. "Heterogeneous effect of eco-innovation and human capital on renewable & non-renewable energy consumption: Disaggregate analysis for G-7 countries," Energy, Elsevier, vol. 209(C).
    6. Song, Yang & Liu, Dayu & Wang, Qiaoru, 2021. "Identifying characteristic changes in club convergence of China's urban pollution emission: A spatial-temporal feature analysis," Energy Economics, Elsevier, vol. 98(C).
    7. Shaozhou Qi & Huarong Peng & Xiujie Tan, 2019. "The Moderating Effect of R&D Investment on Income and Carbon Emissions in China: Direct and Spatial Spillover Insights," Sustainability, MDPI, vol. 11(5), pages 1-19, February.
    8. Chen, Jinglong & Wang, Dandan & Wang, Qinqin & Cai, Qiran, 2024. "Quantifying the synergy of China's carbon neutrality policies through policy documents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    9. Fabio Antoniou & Roland Strausz, 2014. "The Effectiveness of Taxation and Feed-in Tariffs," CESifo Working Paper Series 4788, CESifo.
    10. Li, Aijun & Du, Nan & Wei, Qian, 2014. "The cross-country implications of alternative climate policies," Energy Policy, Elsevier, vol. 72(C), pages 155-163.
    11. Wang, Ke & Yang, Kexin & Wei, Yi-Ming & Zhang, Chi, 2018. "Shadow prices of direct and overall carbon emissions in China’s construction industry: A parametric directional distance function-based sensitive estimation," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 180-193.
    12. Touitou Mohammed, 2021. "Empirical Analysis of the Environmental Kuznets Curve for Economic Growth and CO2 Emissions in North African Countries," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 25(2), pages 67-77, June.
    13. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    14. Yue, Shen & Munir, Irfan Ullah & Hyder, Shabir & Nassani, Abdelmohsen A. & Qazi Abro, Muhammad Moinuddin & Zaman, Khalid, 2020. "Sustainable food production, forest biodiversity and mineral pricing: Interconnected global issues," Resources Policy, Elsevier, vol. 65(C).
    15. Lawrence H. Goulder, 2013. "Markets for Pollution Allowances: What Are the (New) Lessons?," Journal of Economic Perspectives, American Economic Association, vol. 27(1), pages 87-102, Winter.
    16. Yan, Bingqian & Xia, Yan & Jiang, Xuemei, 2023. "Carbon productivity and value-added generations: Regional heterogeneity along global value chain," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 111-125.
    17. Padovano, Fabio & Petrarca, Ilaria, 2014. "Are the responsibility and yardstick competition hypotheses mutually consistent?," European Journal of Political Economy, Elsevier, vol. 34(C), pages 459-477.
    18. Francesco Nicolli & Francesco Vona & Lionel Nesta, 2012. "Determinants of Renewable Energy Innovation: Environmental Policies vs. Market Regulation," Working Papers 201204, University of Ferrara, Department of Economics.
    19. Jonathan M. Lee, 2015. "The Impact of Heterogeneous NOx Regulations on Distributed Electricity Generation in U.S. Manufacturing," Working Papers 15-12, Center for Economic Studies, U.S. Census Bureau.
    20. Johannes Urpelainen, 2012. "How do electoral competition and special interests shape the stringency of renewable energy standards?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 14(1), pages 23-34, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:10905-:d:903903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.