IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16725-d1002449.html
   My bibliography  Save this article

Decoupling Effect, Driving Factors and Prediction Analysis of Agricultural Carbon Emission Reduction and Product Supply Guarantee in China

Author

Listed:
  • Lin Zhang

    (Economic Institute, Guizhou University of Finance and Economics, Guiyang 550025, China)

  • Jinyan Chen

    (Economic Institute, Guizhou University of Finance and Economics, Guiyang 550025, China)

  • Faustino Dinis

    (Economic Institute, Guizhou University of Finance and Economics, Guiyang 550025, China)

  • Sha Wei

    (Economic Institute, Guizhou University of Finance and Economics, Guiyang 550025, China)

  • Chengzhi Cai

    (Economic Institute, Guizhou University of Finance and Economics, Guiyang 550025, China)

Abstract

Under the requirements for high-quality development, the coordinated promotion of agricultural carbon emission reduction and agricultural product supply guarantee in China is crucial to hold the bottom line of national food security as well as promote agricultural green transformation and development. Based on such situation, from the perspective of decoupling effect, driving factors and the prediction, this paper uses panel data of 30 provinces in China from 2011 to 2020, takes the carbon emission formula, the “two-stage rolling” Tapio decoupling elasticity coefficient method, the spatial Durbin model and the Grey model optimized by the Simpson formula background value to quantify the relationship between agricultural carbon emission and agricultural product supply, analyze the driving effects of agricultural carbon emission reduction and agricultural product increase, and predict the decoupling state of agricultural carbon emission and agricultural product supply between 2021 and 2025, so as to draw a scientific basis that is conducive to the coordinated promotion of agricultural carbon emission reduction and agricultural product supply guarantee in China. The result shows that: (1) The decoupling state of agricultural carbon emission and agricultural product supply shows generally “the eastern and central regions are better than the western regions” in China, and the decoupling state has improved significantly year by year. Green technology innovation (GTI), agricultural carbon emission and agricultural product supply in China have significant spatial differences and spatial auto-correlation, which shows the spatial factors cannot be ignored; (2) Green technology innovation and agricultural carbon emission in local and adjacent provinces are both in an inverted “U-shaped” relationship, meaning that high level green technology innovation is an effective way to reduce carbon emission. Though green technology innovation and agricultural product supply in local and adjacent provinces are both in a positive “U-shaped” relationship, but the minimum value of lnGTI is greater than 0, which indicates that current level of green technology has been raised to a certain level, effectively improving the output of agricultural products; (3) Compared with those in 2016–2020 in China, it is projected that in 2021–2025 the decoupling state of agricultural carbon emission and agricultural product supply will be improved significantly, and the provinces below the optimal state will leave the extremely unreasonable strong negative decoupling state, mainly show recessionary decoupling and recessionary connection. Our findings provide Chinese decision-makers with corresponding references to formulate accountable and scientific regional policies in order to achieve high-quality development of agriculture and realize “Double carbon” target in China.

Suggested Citation

  • Lin Zhang & Jinyan Chen & Faustino Dinis & Sha Wei & Chengzhi Cai, 2022. "Decoupling Effect, Driving Factors and Prediction Analysis of Agricultural Carbon Emission Reduction and Product Supply Guarantee in China," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16725-:d:1002449
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16725/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16725/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fahad Khan & Pratibha Pandey & Tarun Kumar Upadhyay, 2022. "Applications of Nanotechnology-Based Agrochemicals in Food Security and Sustainable Agriculture: An Overview," Agriculture, MDPI, vol. 12(10), pages 1-13, October.
    2. Yanqiu He & Hongchun Wang & Rou Chen & Shiqi Hou & Dingde Xu, 2022. "The Forms, Channels and Conditions of Regional Agricultural Carbon Emission Reduction Interaction: A Provincial Perspective in China," IJERPH, MDPI, vol. 19(17), pages 1-22, September.
    3. Lili Guo & Shuang Zhao & Yuting Song & Mengqian Tang & Houjian Li, 2022. "Green Finance, Chemical Fertilizer Use and Carbon Emissions from Agricultural Production," Agriculture, MDPI, vol. 12(3), pages 1-18, February.
    4. Zhou, Fengxiu & Wang, Xiaoyu, 2022. "The carbon emissions trading scheme and green technology innovation in China: A new structural economics perspective," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 365-381.
    5. Liang Liu & Yuhan Zhang & Xiujuan Gong & Mengyue Li & Xue Li & Donglin Ren & Pan Jiang, 2022. "Impact of Digital Economy Development on Carbon Emission Efficiency: A Spatial Econometric Analysis Based on Chinese Provinces and Cities," IJERPH, MDPI, vol. 19(22), pages 1-21, November.
    6. Xuan Chang & Jinye Li, 2022. "Effects of the Digital Economy on Carbon Emissions in China: A Spatial Durbin Econometric Analysis," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    7. Sufyanullah, Khan & Ahmad, Khan Arshad & Sufyan Ali, Muhammad Abu, 2022. "Does emission of carbon dioxide is impacted by urbanization? An empirical study of urbanization, energy consumption, economic growth and carbon emissions - Using ARDL bound testing approach," Energy Policy, Elsevier, vol. 164(C).
    8. Lili Guo & Yuting Song & Shuang Zhao & Mengqian Tang & Yangli Guo & Mengying Su & Houjian Li, 2022. "Dynamic Linkage between Aging, Mechanizations and Carbon Emissions from Agricultural Production," IJERPH, MDPI, vol. 19(10), pages 1-22, May.
    9. Lili Guo & Sihang Guo & Mengqian Tang & Mengying Su & Houjian Li, 2022. "Financial Support for Agriculture, Chemical Fertilizer Use, and Carbon Emissions from Agricultural Production in China," IJERPH, MDPI, vol. 19(12), pages 1-19, June.
    10. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    11. Yi, Ming & Liu, Yafen & Sheng, Mingyue Selena & Wen, Le, 2022. "Effects of digital economy on carbon emission reduction: New evidence from China," Energy Policy, Elsevier, vol. 171(C).
    12. Bunje, Madinatou Yeh & Abendin, Simon & Wang, Yin, 2022. "The multidimensional effect of financial development on trade in Africa: The role of the digital economy," Telecommunications Policy, Elsevier, vol. 46(10).
    13. Taohong Wang & Zhe Song & Jing Zhou & Huaping Sun & Fengqin Liu, 2022. "Low-Carbon Transition and Green Innovation: Evidence from Pilot Cities in China," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    14. Chengyou Li & Zhouhao Sha & Xiaoqin Sun & Yong Jiao, 2022. "The Effectiveness Assessment of Agricultural Subsidy Policies on Food Security: Evidence from China’s Poverty-Stricken Villages," IJERPH, MDPI, vol. 19(21), pages 1-17, October.
    15. Asif Khan & Wu Ximei, 2022. "Digital Economy and Environmental Sustainability: Do Information Communication and Technology (ICT) and Economic Complexity Matter?," IJERPH, MDPI, vol. 19(19), pages 1-21, September.
    16. Rui Gong & Yong-Qiu Wu & Feng-Wen Chen & Tai-Hua Yan, 2020. "Labor Costs, Market Environment and Green Technological Innovation: Evidence from High-Pollution Firms," IJERPH, MDPI, vol. 17(2), pages 1-20, January.
    17. Zhichuan Zhu & Bo Liu & Zhuoxi Yu & Jianhong Cao, 2022. "Effects of the Digital Economy on Carbon Emissions: Evidence from China," IJERPH, MDPI, vol. 19(15), pages 1-21, August.
    18. Wang, Qiang & Zhang, Chen & Li, Rongrong, 2022. "Towards carbon neutrality by improving carbon efficiency - A system-GMM dynamic panel analysis for 131 countries’ carbon efficiency," Energy, Elsevier, vol. 258(C).
    19. Dungang Zang & Zhijia Hu & Yunqi Yang & Siyu He, 2022. "Research on the Relationship between Agricultural Carbon Emission Intensity, Agricultural Economic Development and Agricultural Trade in China," Sustainability, MDPI, vol. 14(18), pages 1-22, September.
    20. J. Paul Elhorst, 2014. "Matlab Software for Spatial Panels," International Regional Science Review, , vol. 37(3), pages 389-405, July.
    21. Daiva Makutėnienė & Dalia Perkumienė & Valdemaras Makutėnas, 2022. "Logarithmic Mean Divisia Index Decomposition Based on Kaya Identity of GHG Emissions from Agricultural Sector in Baltic States," Energies, MDPI, vol. 15(3), pages 1-26, February.
    22. Le Sun & Congmou Zhu & Shaofeng Yuan & Lixia Yang & Shan He & Wuyan Li, 2022. "Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenhua Xu & Fuyi Ci, 2023. "Spatial-Temporal Characteristics and Driving Factors of Coupling Coordination between the Digital Economy and Low-Carbon Development in the Yellow River Basin," Sustainability, MDPI, vol. 15(3), pages 1-23, February.
    2. Qiuqiu Guo & Xiaoyu Ma, 2023. "How Does the Digital Economy Affect Sustainable Urban Development? Empirical Evidence from Chinese Cities," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    3. Shouwu Jing & Feijie Wu & Enyi Shi & Xinhui Wu & Minzhe Du, 2023. "Does the Digital Economy Promote the Reduction of Urban Carbon Emission Intensity?," IJERPH, MDPI, vol. 20(4), pages 1-22, February.
    4. Ziyu Meng & Wen-Bo Li & Chaofan Chen & Chenghua Guan, 2023. "Carbon Emission Reduction Effects of the Digital Economy: Mechanisms and Evidence from 282 Cities in China," Land, MDPI, vol. 12(4), pages 1-21, March.
    5. Senhua Huang & Lingming Chen, 2023. "The Impact of the Digital Economy on the Urban Total-Factor Energy Efficiency: Evidence from 275 Cities in China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    6. Zheng, Li & Yuan, Ling & Khan, Zeeshan & Badeeb, Ramez Abubakr & Zhang, Leilei, 2023. "How G-7 countries are paving the way for net-zero emissions through energy efficient ecosystem?," Energy Economics, Elsevier, vol. 117(C).
    7. Xidong Zhang & Juan Zhang & Chengbo Yang, 2023. "Spatio-Temporal Evolution of Agricultural Carbon Emissions in China, 2000–2020," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    8. Ruiyuan Dong & Xiaowei Zhou, 2023. "Analysis of the Nonlinear and Spatial Spillover Effects of the Digital Economy on Carbon Emissions in the Yellow River Basin," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    9. Pingguo Xu & Leyi Chen & Huajuan Dai, 2022. "Pathways to Sustainable Development: Corporate Digital Transformation and Environmental Performance in China," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    10. Zhao Yang, 2023. "Can the Digitalization Reduce Carbon Emission Intensity?—The Moderating Effects of the Fiscal Decentralization," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    11. Yuqing Jin & Zhidan Shen & Jianxu Liu & Roengchai Tansuchat, 2023. "The Impact of the Digital Economy on the Health Industry from the Perspective of Threshold and Intermediary Effects: Evidence from China," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    12. Yingzi Chen & Wanwan Yang & Yaqi Hu, 2022. "Internet Development, Consumption Upgrading and Carbon Emissions—An Empirical Study from China," IJERPH, MDPI, vol. 20(1), pages 1-23, December.
    13. Wang, Lianghu & Shao, Jun, 2023. "Digital economy, entrepreneurship and energy efficiency," Energy, Elsevier, vol. 269(C).
    14. Kaiwen Liu & Hongbing Deng & Ting Wu & Yang Yi & Yao Zhang & Yunlong Ren, 2023. "Technological Innovation, Urban Spatial Structure, and Haze Pollution: Empirical Evidence from the Middle Reaches of the Yangtze River Urban Agglomeration," Energies, MDPI, vol. 16(18), pages 1-25, September.
    15. Guoge Yang & Fengyi Wang & Feng Deng & Xianhong Xiang, 2023. "Impact of Digital Transformation on Enterprise Carbon Intensity: The Moderating Role of Digital Information Resources," IJERPH, MDPI, vol. 20(3), pages 1-26, January.
    16. Shixiong Song & Siyuan Zhao & Ye Zhang & Yongxi Ma, 2023. "Carbon Emissions from Agricultural Inputs in China over the Past Three Decades," Agriculture, MDPI, vol. 13(5), pages 1-12, April.
    17. Yang Qi & Mingyue Gao & Haoyu Wang & Huijie Ding & Jianxu Liu & Songsak Sriboonchitta, 2023. "Does Marketization Promote High-Quality Agricultural Development in China?," Sustainability, MDPI, vol. 15(12), pages 1-28, June.
    18. Quan Xiao & Yu Wang & Haojie Liao & Gang Han & Yunjie Liu, 2023. "The Impact of Digital Inclusive Finance on Agricultural Green Total Factor Productivity: A Study Based on China’s Provinces," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    19. Zhang, Weike & Fan, Hongxia & Zhao, Qiwei, 2023. "Seeing green: How does digital infrastructure affect carbon emission intensity?," Energy Economics, Elsevier, vol. 127(PB).
    20. Yan Peng & Hanzi Chen & Tinghui Li, 2023. "The Impact of Digital Transformation on ESG: A Case Study of Chinese-Listed Companies," Sustainability, MDPI, vol. 15(20), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16725-:d:1002449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.