IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i13p6832-d582281.html
   My bibliography  Save this article

Geographical Detector-Based Spatial Modeling of the COVID-19 Mortality Rate in the Continental United States

Author

Listed:
  • Han Yue

    (Center of GeoInformatics for Public Security, School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China)

  • Tao Hu

    (Department of Geography, Oklahoma State University, Stillwater, OK 74078, USA
    Center for Geographic Analysis, Harvard University, Cambridge, MA 02138, USA)

Abstract

Investigating the spatial distribution patterns of disease and suspected determinants could help one to understand health risks. This study investigated the potential risk factors associated with COVID-19 mortality in the continental United States. We collected death cases of COVID-19 from 3108 counties from 23 January 2020 to 31 May 2020. Twelve variables, including demographic (the population density, percentage of 65 years and over, percentage of non-Hispanic White, percentage of Hispanic, percentage of non-Hispanic Black, and percentage of Asian individuals), air toxins (PM2.5), climate (precipitation, humidity, temperature), behavior and comorbidity (smoking rate, cardiovascular death rate) were gathered and considered as potential risk factors. Based on four geographical detectors (risk detector, factor detector, ecological detector, and interaction detector) provided by the novel Geographical Detector technique, we assessed the spatial risk patterns of COVID-19 mortality and identified the effects of these factors. This study found that population density and percentage of non-Hispanic Black individuals were the two most important factors responsible for the COVID-19 mortality rate. Additionally, the interactive effects between any pairs of factors were even more significant than their individual effects. Most existing research examined the roles of risk factors independently, as traditional models are usually unable to account for the interaction effects between different factors. Based on the Geographical Detector technique, this study’s findings showed that causes of COVID-19 mortality were complex. The joint influence of two factors was more substantial than the effects of two separate factors. As the COVID-19 epidemic status is still severe, the results of this study are supposed to be beneficial for providing instructions and recommendations for the government on epidemic risk responses to COVID-19.

Suggested Citation

  • Han Yue & Tao Hu, 2021. "Geographical Detector-Based Spatial Modeling of the COVID-19 Mortality Rate in the Continental United States," IJERPH, MDPI, vol. 18(13), pages 1-16, June.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:6832-:d:582281
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/13/6832/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/13/6832/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael F. Goodchild & Robert P. Haining, 2004. "GIS and spatial data analysis: Converging perspectives," Advances in Spatial Science, in: Raymond J. G. M. Florax & David A. Plane (ed.), Fifty Years of Regional Science, pages 363-385, Springer.
    2. Jixia Huang & Jinfeng Wang & Yanchen Bo & Chengdong Xu & Maogui Hu & Dacang Huang, 2014. "Identification of Health Risks of Hand, Foot and Mouth Disease in China Using the Geographical Detector Technique," IJERPH, MDPI, vol. 11(3), pages 1-17, March.
    3. Luc Anselin & Yong Wook Kim & Ibnu Syabri, 2004. "Web-based analytical tools for the exploration of spatial data," Journal of Geographical Systems, Springer, vol. 6(2), pages 197-218, June.
    4. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaotong Gao & Naigang Cao & Yushuo Zhang & Lin Zhao, 2022. "Spatial Structure of China’s Green Development Efficiency: A Perspective Based on Social Network Analysis," Sustainability, MDPI, vol. 14(23), pages 1-16, December.
    2. Chan Chen & Jie Li & Jian Huang, 2022. "Spatial–Temporal Patterns of Population Aging in Rural China," IJERPH, MDPI, vol. 19(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:asg:wpaper:1047 is not listed on IDEAS
    2. Vicente Rios Ibañez, 2014. "What drives regional unemployment convergence?," ERSA conference papers ersa14p924, European Regional Science Association.
    3. Ageliki Anagnostou & Ioannis Panteladis & Maria Tsiapa, 2015. "Disentangling different patterns of business cycle synchronicity in the EU regions," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 42(3), pages 615-641, August.
    4. Marrocu, Emanuela & Paci, Raffaele, 2013. "Different tourists to different destinations. Evidence from spatial interaction models," Tourism Management, Elsevier, vol. 39(C), pages 71-83.
    5. Ilenia Epifani & Rosella Nicolini, 2013. "On The Population Density Distribution Across Space: A Probabilistic Approach," Journal of Regional Science, Wiley Blackwell, vol. 53(3), pages 481-510, August.
    6. Dubey, Subodh & Sharma, Ishant & Mishra, Sabyasachee & Cats, Oded & Bansal, Prateek, 2022. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 63-95.
    7. Ye, Xinyue & Yue, Wenze, 2014. "Comparative analysis of regional development: Exploratory space-time data analysis and open source implementation," Economics Discussion Papers 2014-20, Kiel Institute for the World Economy (IfW Kiel).
    8. Jorge Luis Casanova Ferrando, 2019. "The Airbnb Effect on theRental Market: the Case of Madrid," Studies on the Spanish Economy eee2019-34, FEDEA.
    9. Srikant Devaraj & Marcus T. Wolfe & Pankaj C. Patel, 2021. "Creative destruction and regional health: evidence from the US," Journal of Evolutionary Economics, Springer, vol. 31(2), pages 573-604, April.
    10. Takafumi Kato, 2020. "Likelihood-based strategies for estimating unknown parameters and predicting missing data in the simultaneous autoregressive model," Journal of Geographical Systems, Springer, vol. 22(1), pages 143-176, January.
    11. Zhenhua Chen & Laurie A. Schintler, 2023. "Rediscovering regional science: Positioning the field's evolving location in science and society," Journal of Regional Science, Wiley Blackwell, vol. 63(3), pages 617-642, June.
    12. Panagiotis Artelaris & Yannis Tsirbas, 2018. "Anti-austerity voting in an era of economic crisis: Regional evidence from the 2015 referendum in Greece," Environment and Planning C, , vol. 36(4), pages 589-608, June.
    13. Álvarez, Inmaculada C. & Barbero, Javier & Zofío, José L., 2017. "A Panel Data Toolbox for MATLAB," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i06).
    14. Philipp Otto & Wolfgang Schmid, 2018. "Spatiotemporal analysis of German real-estate prices," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 60(1), pages 41-72, January.
    15. Tsusaka, Takuji W. & Kajisa, Kei & Pede, Valerien O. & Aoyagi, Keitaro, 2015. "Neighborhood effects and social behavior: The case of irrigated and rainfed farmers in Bohol, the Philippines," Journal of Economic Behavior & Organization, Elsevier, vol. 118(C), pages 227-246.
    16. repec:asg:wpaper:1045 is not listed on IDEAS
    17. Gianfranco Piras & Mauricio Sarrias, 2023. "Heterogeneous spatial models in R: spatial regimes models," Journal of Spatial Econometrics, Springer, vol. 4(1), pages 1-32, December.
    18. Katarina Zigova, 2017. "Specifying Social Weight Matrices of Researcher Networks: The Case of Academic Economists," Working Paper Series of the Department of Economics, University of Konstanz 2017-10, Department of Economics, University of Konstanz.
    19. Stephen Matthews & Daniel M. Parker, 2013. "Progress in Spatial Demography," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 28(10), pages 271-312.
    20. Chandra R. Bhat & Subodh K. Dubey & Mohammad Jobair Bin Alam & Waleed H. Khushefati, 2015. "A New Spatial Multiple Discrete-Continuous Modeling Approach To Land Use Change Analysis," Journal of Regional Science, Wiley Blackwell, vol. 55(5), pages 801-841, November.
    21. repec:asg:wpaper:1008 is not listed on IDEAS
    22. Bivand, Roger & Piras, Gianfranco, 2015. "Comparing Implementations of Estimation Methods for Spatial Econometrics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i18).
    23. Keqiang Dong & Liao Guo, 2021. "Research on the Spatial Correlation and Spatial Lag of COVID-19 Infection Based on Spatial Analysis," Sustainability, MDPI, vol. 13(21), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:6832-:d:582281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.