IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v11y2014i9p9409-9428d40115.html
   My bibliography  Save this article

Assessing Climate Variability Effects on Dengue Incidence in San Juan, Puerto Rico

Author

Listed:
  • Pablo Méndez-Lázaro

    (Environmental Health Department, Graduate School of Public Health, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan 00936, Puerto Rico)

  • Frank E. Muller-Karger

    (Institute for Marine Remote Sensing, College of Marine Science, University of South Florida, 140 7th Ave. South, St. Petersburg, FL 33701, USA)

  • Daniel Otis

    (Institute for Marine Remote Sensing, College of Marine Science, University of South Florida, 140 7th Ave. South, St. Petersburg, FL 33701, USA)

  • Matthew J. McCarthy

    (Institute for Marine Remote Sensing, College of Marine Science, University of South Florida, 140 7th Ave. South, St. Petersburg, FL 33701, USA)

  • Marisol Peña-Orellana

    (Center for Public Health Preparedness, Graduate School of Public Health, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan 00936, Puerto Rico)

Abstract

We test the hypothesis that climate and environmental conditions are becoming favorable for dengue transmission in San Juan, Puerto Rico. Sea Level Pressure (SLP), Mean Sea Level (MSL), Wind, Sea Surface Temperature (SST), Air Surface Temperature (AST), Rainfall, and confirmed dengue cases were analyzed. We evaluated the dengue incidence and environmental data with Principal Component Analysis, Pearson correlation coefficient, Mann-Kendall trend test and logistic regressions. Results indicated that dry days are increasing and wet days are decreasing. MSL is increasing, posing higher risk of dengue as the perimeter of the San Juan Bay estuary expands and shorelines move inland. Warming is evident with both SST and AST. Maximum and minimum air surface temperature extremes have increased. Between 1992 and 2011, dengue transmission increased by a factor of 3.4 (95% CI: 1.9–6.1) for each 1 °C increase in SST. For the period 2007–2011 alone, dengue incidence reached a factor of 5.2 (95% CI: 1.9–13.9) for each 1 °C increase in SST. Teenagers are consistently the age group that suffers the most infections in San Juan. Results help understand possible impacts of different climate change scenarios in planning for social adaptation and public health interventions.

Suggested Citation

  • Pablo Méndez-Lázaro & Frank E. Muller-Karger & Daniel Otis & Matthew J. McCarthy & Marisol Peña-Orellana, 2014. "Assessing Climate Variability Effects on Dengue Incidence in San Juan, Puerto Rico," IJERPH, MDPI, vol. 11(9), pages 1-20, September.
  • Handle: RePEc:gam:jijerp:v:11:y:2014:i:9:p:9409-9428:d:40115
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/11/9/9409/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/11/9/9409/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael A Johansson & Derek A T Cummings & Gregory E Glass, 2009. "Multiyear Climate Variability and Dengue—El Niño Southern Oscillation, Weather, and Dengue Incidence in Puerto Rico, Mexico, and Thailand: A Longitudinal Data Analysis," PLOS Medicine, Public Library of Science, vol. 6(11), pages 1-9, November.
    2. Jie Chen & François Brissette & Robert Leconte, 2012. "Coupling statistical and dynamical methods for spatial downscaling of precipitation," Climatic Change, Springer, vol. 114(3), pages 509-526, October.
    3. Elodie Descloux & Morgan Mangeas & Christophe Eugène Menkes & Matthieu Lengaigne & Anne Leroy & Temaui Tehei & Laurent Guillaumot & Magali Teurlai & Ann-Claire Gourinat & Justus Benzler & Anne Pfannst, 2012. "Climate-Based Models for Understanding and Forecasting Dengue Epidemics," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 6(2), pages 1-19, February.
    4. Xuebin Zhang & Lisa Alexander & Gabriele C. Hegerl & Philip Jones & Albert Klein Tank & Thomas C. Peterson & Blair Trewin & Francis W. Zwiers, 2011. "Indices for monitoring changes in extremes based on daily temperature and precipitation data," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(6), pages 851-870, November.
    5. Altaii, K & Farrugia, R.N, 2003. "Wind characteristics on the Caribbean island of Puerto Rico," Renewable Energy, Elsevier, vol. 28(11), pages 1701-1710.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juliana Pérez-Pérez & Víctor Hugo Peña-García & Arley Calle-Tobón & Marcela Quimbayo-Forero & Raúl Rojo & Enrique Henao & Talya Shragai & Guillermo Rúa-Uribe, 2021. "Entomovirological Surveillance in Schools: Are They a Source for Arboviral Diseases Transmission?," IJERPH, MDPI, vol. 18(11), pages 1-14, June.
    2. Bipin Kumar Acharya & Chunxiang Cao & Min Xu & Laxman Khanal & Shahid Naeem & Shreejana Pandit, 2018. "Present and Future of Dengue Fever in Nepal: Mapping Climatic Suitability by Ecological Niche Model," IJERPH, MDPI, vol. 15(2), pages 1-15, January.
    3. Kenza Khomsi & Youssef Chelhaoui & Soukaina Alilou & Rania Souri & Houda Najmi & Zineb Souhaili, 2022. "Concurrent Heat Waves and Extreme Ozone (O 3 ) Episodes: Combined Atmospheric Patterns and Impact on Human Health," IJERPH, MDPI, vol. 19(5), pages 1-15, February.
    4. Syed Ali Asad Naqvi & Muhammad Sajjad & Liaqat Ali Waseem & Shoaib Khalid & Saima Shaikh & Syed Jamil Hasan Kazmi, 2021. "Integrating Spatial Modelling and Space–Time Pattern Mining Analytics for Vector Disease-Related Health Perspectives: A Case of Dengue Fever in Pakistan," IJERPH, MDPI, vol. 18(22), pages 1-30, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kraisak Kesorn & Phatsavee Ongruk & Jakkrawarn Chompoosri & Atchara Phumee & Usavadee Thavara & Apiwat Tawatsin & Padet Siriyasatien, 2015. "Morbidity Rate Prediction of Dengue Hemorrhagic Fever (DHF) Using the Support Vector Machine and the Aedes aegypti Infection Rate in Similar Climates and Geographical Areas," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-16, May.
    2. Ting-Wu Chuang & Luis Fernando Chaves & Po-Jiang Chen, 2017. "Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-20, June.
    3. Asim Anwar & Noman Khan & Muhammad Ayub & Faisal Nawaz & Asim Shah & Antoine Flahault, 2019. "Modeling and Predicting Dengue Incidence in Highly Vulnerable Countries using Panel Data Approach," IJERPH, MDPI, vol. 16(13), pages 1-8, June.
    4. Maneerat, Somsakun & Daudé, Eric, 2016. "A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas," Ecological Modelling, Elsevier, vol. 333(C), pages 66-78.
    5. Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).
    6. Nicholas G. Reich & Justin Lessler & Krzysztof Sakrejda & Stephen A. Lauer & Sopon Iamsirithaworn & Derek A. T. Cummings, 2016. "Case Study in Evaluating Time Series Prediction Models Using the Relative Mean Absolute Error," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 285-292, July.
    7. Jie Chen & Xunchang John Zhang, 2021. "Challenges and potential solutions in statistical downscaling of precipitation," Climatic Change, Springer, vol. 165(3), pages 1-19, April.
    8. Mohammad Hasan Mahmoudi & Mohammad Reza Najafi & Harsimrenjit Singh & Markus Schnorbus, 2021. "Spatial and temporal changes in climate extremes over northwestern North America: the influence of internal climate variability and external forcing," Climatic Change, Springer, vol. 165(1), pages 1-19, March.
    9. Helbling, Marc & Auer, Daniel & Meierrieks, Daniel & Mistry, Malcolm & Schaub, Max, 2021. "Climate change literacy and migration potential: micro-level evidence from Africa," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 169(1-2), pages 1-1.
    10. Bernard Bett & Delia Grace & Hu Suk Lee & Johanna Lindahl & Hung Nguyen-Viet & Pham-Duc Phuc & Nguyen Huu Quyen & Tran Anh Tu & Tran Dac Phu & Dang Quang Tan & Vu Sinh Nam, 2019. "Spatiotemporal analysis of historical records (2001–2012) on dengue fever in Vietnam and development of a statistical model for forecasting risk," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-22, November.
    11. Gareth J. Marshall & Kirsti Jylhä & Sonja Kivinen & Mikko Laapas & Anita Verpe Dyrrdal, 2020. "The role of atmospheric circulation patterns in driving recent changes in indices of extreme seasonal precipitation across Arctic Fennoscandia," Climatic Change, Springer, vol. 162(2), pages 741-759, September.
    12. Berlemann, Michael & Eurich, Marina, 2021. "Natural hazard risk and life satisfaction – Empirical evidence for hurricanes," Ecological Economics, Elsevier, vol. 190(C).
    13. E. Pastén-Zapata & T. Eberhart & K. H. Jensen & J. C. Refsgaard & T. O. Sonnenborg, 2022. "Towards a More Robust Evaluation of Climate Model and Hydrological Impact Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3545-3560, August.
    14. Christopher J. Picard & Jonathan M. Winter & Charlotte Cockburn & Janel Hanrahan & Natalie G. Teale & Patrick J. Clemins & Brian Beckage, 2023. "Twenty-first century increases in total and extreme precipitation across the Northeastern USA," Climatic Change, Springer, vol. 176(6), pages 1-26, June.
    15. Lukas Brunner & Aiko Voigt, 2024. "Pitfalls in diagnosing temperature extremes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Amanda de O. Regueira & Henderson Silva Wanderley, 2022. "Changes in rainfall rates and increased number of extreme rainfall events in Rio de Janeiro city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3833-3847, December.
    17. Soledad Collazo & Mariana Barrucand & Matilde Rusticucci, 2022. "Evaluation of CMIP6 models in the representation of observed extreme temperature indices trends in South America," Climatic Change, Springer, vol. 172(1), pages 1-21, May.
    18. Luong Thi Nguyen & Huy Xuan Le & Dong Thanh Nguyen & Ha Quang Ho & Ting-Wu Chuang, 2020. "Impact of Climate Variability and Abundance of Mosquitoes on Dengue Transmission in Central Vietnam," IJERPH, MDPI, vol. 17(7), pages 1-16, April.
    19. Xiaoyan Liang & Zhenmin Niu & Xiaolong Li, 2023. "Temporal and Spatial Variations of Extreme Climate Events in Northwestern China from 1960 to 2020," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
    20. Sinha, Avik, 2017. "Inequality of renewable energy generation across OECD countries: A note," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 9-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:11:y:2014:i:9:p:9409-9428:d:40115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.