IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i6d10.1007_s11069-024-07054-6.html
   My bibliography  Save this article

Insights into teleconnection mechanism of extreme precipitation events based on the SHAP-XGBoost model: evidence from Hekou-Longmen section in China

Author

Listed:
  • Chun Deng

    (Northwest University
    Yuncheng University)

  • Xiaohui Jiang

    (Northwest University)

  • Chentian Jiang

    (Nanjing University of Science and Technology)

  • Tong Nie

    (Northwest University)

  • Yuxin Lei

    (Northwest University)

  • Anle Yang

    (Northwest University)

Abstract

Extreme precipitation events are critical natural phenomena that often lead to riverine flooding and geological disasters. However, the mechanisms driving the spatiotemporal variability of Extreme precipitation events remain insufficiently understood. To address this knowledge gap, this study focuses on the Hekou-Longmen segment (HL). Using daily precipitation data, extreme precipitation indices (EPIs) are evaluated across three temporal scales—annual, seasonal, and monthly—covering the period from 1961 to 2022. Additionally, nine large-scale climate circulation indices (LCCIs) are incorporated into the analysis. The XGBoost algorithm, combined with the Shapley Additive Explanations (SHAP) method, is applied to quantitatively assess the global and localized impacts of the CCIs on extreme precipitation indices (EPIs) at the monthly scale. The analysis ultimately elucidates the mechanisms by which LCCIs influence EPIs variability. The results indicate several key findings: (1) In the HL, although there is a an insignifican increase in the intensity, quantity, and duration of EPIs, no statistically significant inter-annual declining trend is observed. Seasonal and monthly analyses reveal that EPIs are most pronounced during summer, with July consistently recording the highest values. (2) Long-term spatial variability in EPIs exhibit either stability or insignificant improvement. Regions with slight significant improvement and significant improvement are identified for indices such as R95p, RX1day, RX5day, and SDII. Remarkable regional variability is observed, with increasing trends in the middle and upper reaches, and decreasing trends in the lower zones. (3) Key factors influencing EPI variations are pinpointed, including solar flux index (X1), Western Pacific Subtropical High (X4), Atlantic Multidecadal Oscillation (X7), and El Niño (X9), with X4 exerting the most substantial influence. (4) SHAP analysis reveals that X4 is negatively associated with CCD but positively correlated with the remaining 10 EPIs. These findings provide important insights into the management of climate extremes and offer strategic guidance for mitigating the impacts of extreme weather in the HL and comparable climatic regions.

Suggested Citation

  • Chun Deng & Xiaohui Jiang & Chentian Jiang & Tong Nie & Yuxin Lei & Anle Yang, 2025. "Insights into teleconnection mechanism of extreme precipitation events based on the SHAP-XGBoost model: evidence from Hekou-Longmen section in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(6), pages 7447-7468, April.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:6:d:10.1007_s11069-024-07054-6
    DOI: 10.1007/s11069-024-07054-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-07054-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-07054-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xuebin Zhang & Lisa Alexander & Gabriele C. Hegerl & Philip Jones & Albert Klein Tank & Thomas C. Peterson & Blair Trewin & Francis W. Zwiers, 2011. "Indices for monitoring changes in extremes based on daily temperature and precipitation data," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(6), pages 851-870, November.
    2. Xun Liu & Peng Zhou & Yichen Lin & Siwei Sun & Hailu Zhang & Wanqing Xu & Sangdi Yang, 2022. "Influencing Factors and Risk Assessment of Precipitation-Induced Flooding in Zhengzhou, China, Based on Random Forest and XGBoost Algorithms," IJERPH, MDPI, vol. 19(24), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Binglin Zhang & Songbai Song & Huimin Wang & Tianli Guo & Yibo Ding, 2025. "Evaluation of the performance of CMIP6 models in simulating extreme precipitation and its projected changes in global climate regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(2), pages 1737-1763, January.
    2. Anil Aryal & Jun Magome & Hiroshi Ishidaira & Kazuyoshi Souma & Umesh Chaudhary, 2025. "Evaluating the extreme precipitation indices and their impacts in the Volta River Basin in West Africa from a nexus perspective," Sustainability Nexus Forum, Springer, vol. 33(1), pages 1-15, December.
    3. Helbling, Marc & Auer, Daniel & Meierrieks, Daniel & Mistry, Malcolm & Schaub, Max, 2021. "Climate change literacy and migration potential: micro-level evidence from Africa," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 169(1-2), pages 1-1.
    4. Gareth J. Marshall & Kirsti Jylhä & Sonja Kivinen & Mikko Laapas & Anita Verpe Dyrrdal, 2020. "The role of atmospheric circulation patterns in driving recent changes in indices of extreme seasonal precipitation across Arctic Fennoscandia," Climatic Change, Springer, vol. 162(2), pages 741-759, September.
    5. Berlemann, Michael & Eurich, Marina, 2021. "Natural hazard risk and life satisfaction – Empirical evidence for hurricanes," Ecological Economics, Elsevier, vol. 190(C).
    6. Christopher J. Picard & Jonathan M. Winter & Charlotte Cockburn & Janel Hanrahan & Natalie G. Teale & Patrick J. Clemins & Brian Beckage, 2023. "Twenty-first century increases in total and extreme precipitation across the Northeastern USA," Climatic Change, Springer, vol. 176(6), pages 1-26, June.
    7. Paul Waidelich & Fulden Batibeniz & James Rising & Jarmo S. Kikstra & Sonia I. Seneviratne, 2024. "Climate damage projections beyond annual temperature," Nature Climate Change, Nature, vol. 14(6), pages 592-599, June.
    8. Amanda de O. Regueira & Henderson Silva Wanderley, 2022. "Changes in rainfall rates and increased number of extreme rainfall events in Rio de Janeiro city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3833-3847, December.
    9. Xiaoyan Liang & Zhenmin Niu & Xiaolong Li, 2023. "Temporal and Spatial Variations of Extreme Climate Events in Northwestern China from 1960 to 2020," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
    10. Calabrese, Raffaella & Dombrowski, Timothy & Mandel, Antoine & Pace, R. Kelley & Zanin, Luca, 2024. "Impacts of extreme weather events on mortgage risks and their evolution under climate change: A case study on Florida," European Journal of Operational Research, Elsevier, vol. 314(1), pages 377-392.
    11. Jose A. Marengo & Marcelo E. Seluchi & Ana Paula Cunha & Luz Adriana Cuartas & Demerval Goncalves & Vinicius B. Sperling & Andrea M. Ramos & Giovanni Dolif & Silvia Saito & Fabiani Bender & Tarcio Roc, 2023. "Heavy rainfall associated with floods in southeastern Brazil in November–December 2021," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3617-3644, April.
    12. S. Ansa Thasneem & N. R. Chithra & Santosh G. Thampi, 2019. "Analysis of extreme precipitation and its variability under climate change in a river basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(3), pages 1169-1190, September.
    13. Sakineh Khansalari & Atefeh Mohammadi, 2024. "Probabilistic projection of extreme precipitation changes over Iran by the CMIP6 multi-model ensemble," Climatic Change, Springer, vol. 177(7), pages 1-26, July.
    14. Orpita U. Laz & Ataur Rahman & Taha B. M. J. Ouarda, 2025. "Trend and teleconnection analysis of temperature extremes in New South Wales, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(4), pages 4559-4584, March.
    15. Shihao Chen & Jinfeng Pang & Zongzhen Bian & Baohui Men, 2025. "The Effects of Urban Land Expansion Intensify Climate Extremes in China’s Urban Agglomerations," Sustainability, MDPI, vol. 17(5), pages 1-18, February.
    16. Simin Deng & Xuezhi Tan & Bingjun Liu, 2025. "Impacts of changes in climate extremes on maize yields over Mainland China," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 17(1), pages 185-205, February.
    17. Pablo Méndez-Lázaro & Frank E. Muller-Karger & Daniel Otis & Matthew J. McCarthy & Marisol Peña-Orellana, 2014. "Assessing Climate Variability Effects on Dengue Incidence in San Juan, Puerto Rico," IJERPH, MDPI, vol. 11(9), pages 1-20, September.
    18. Mohammad Hasan Mahmoudi & Mohammad Reza Najafi & Harsimrenjit Singh & Markus Schnorbus, 2021. "Spatial and temporal changes in climate extremes over northwestern North America: the influence of internal climate variability and external forcing," Climatic Change, Springer, vol. 165(1), pages 1-19, March.
    19. Changhong Zhou & Mu Chen & Jiangtao Chen & Yu Chen & Wenwu Chen, 2024. "A Multi-Hazard Risk Assessment Model for a Road Network Based on Neural Networks and Fuzzy Comprehensive Evaluation," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    20. E. Pastén-Zapata & T. Eberhart & K. H. Jensen & J. C. Refsgaard & T. O. Sonnenborg, 2022. "Towards a More Robust Evaluation of Climate Model and Hydrological Impact Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3545-3560, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:6:d:10.1007_s11069-024-07054-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.