IDEAS home Printed from https://ideas.repec.org/a/gam/jgames/v5y2014i1p1-25d32689.html
   My bibliography  Save this article

Introducing Disappointment Dynamics and Comparing Behaviors in Evolutionary Games: Some Simulation Results

Author

Listed:
  • Tassos Patokos

    () (University of Hertfordshire, Hertfordshire Business School, Department of Accounting, Finance and Economics, Hatfield, AL10 9AB, UK)

Abstract

The paper presents an evolutionary model, based on the assumption that agents may revise their current strategies if they previously failed to attain the maximum level of potential payoffs. We offer three versions of this reflexive mechanism, each one of which describes a distinct type: spontaneous agents, rigid players, and ‘satisficers’. We use simulations to examine the performance of these types. Agents who change their strategies relatively easily tend to perform better in coordination games, but antagonistic games generally lead to more favorable outcomes if the individuals only change their strategies when disappointment from previous rounds surpasses some predefined threshold.

Suggested Citation

  • Tassos Patokos, 2014. "Introducing Disappointment Dynamics and Comparing Behaviors in Evolutionary Games: Some Simulation Results," Games, MDPI, Open Access Journal, vol. 5(1), pages 1-25, January.
  • Handle: RePEc:gam:jgames:v:5:y:2014:i:1:p:1-25:d:32689
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-4336/5/1/1/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-4336/5/1/1/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fudenberg Drew & Kreps David M., 1993. "Learning Mixed Equilibria," Games and Economic Behavior, Elsevier, vol. 5(3), pages 320-367, July.
    2. Torsten Heinrich & Henning Schwardt, 2013. "Institutional Inertia and Institutional Change in an Expanding Normal-Form Game," Games, MDPI, Open Access Journal, vol. 4(3), pages 1-28, August.
    3. George J. Mailath, 1998. "Corrigenda [Do People Play Nash Equilibrium? Lessons from Evolutionary Game Theory]," Journal of Economic Literature, American Economic Association, vol. 36(4), pages 1941-1941, December.
    4. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    5. Hodgson, Geoffrey M. & Knudsen, Thorbjorn, 2004. "The complex evolution of a simple traffic convention: the functions and implications of habit," Journal of Economic Behavior & Organization, Elsevier, vol. 54(1), pages 19-47, May.
    6. Daniel Friedman, 1998. "On economic applications of evolutionary game theory," Journal of Evolutionary Economics, Springer, vol. 8(1), pages 15-43.
    7. Larry Samuelson, 2002. "Evolution and Game Theory," Journal of Economic Perspectives, American Economic Association, vol. 16(2), pages 47-66, Spring.
    8. Loomes, Graham & Sugden, Robert, 1982. "Regret Theory: An Alternative Theory of Rational Choice under Uncertainty," Economic Journal, Royal Economic Society, vol. 92(368), pages 805-824, December.
    9. Sergiu Hart & Andreu Mas-Colell, 2013. "A Simple Adaptive Procedure Leading To Correlated Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 2, pages 17-46, World Scientific Publishing Co. Pte. Ltd..
    10. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    11. Ross Cressman, 2003. "Evolutionary Dynamics and Extensive Form Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262033054, February.
    12. Ben Irons & Cameron Hepburn, 2007. "Regret Theory and the Tyranny of Choice," The Economic Record, The Economic Society of Australia, vol. 83(261), pages 191-203, June.
    13. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, February.
    14. Michael Braun & Alexander Muermann, 2004. "The Impact of Regret on the Demand for Insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 71(4), pages 737-767, December.
    15. Grant, Simon & Kajii, Atsushi & Polak, Ben, 2001. "Different notions of disappointment aversion," Economics Letters, Elsevier, vol. 70(2), pages 203-208, February.
    16. Gul, Faruk, 1991. "A Theory of Disappointment Aversion," Econometrica, Econometric Society, vol. 59(3), pages 667-686, May.
    17. George J. Mailath, 1998. "Do People Play Nash Equilibrium? Lessons from Evolutionary Game Theory," Journal of Economic Literature, American Economic Association, vol. 36(3), pages 1347-1374, September.
    18. John G. Cross, 1973. "A Stochastic Learning Model of Economic Behavior," The Quarterly Journal of Economics, Oxford University Press, vol. 87(2), pages 239-266.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, Open Access Journal, vol. 9(2), pages 1-67, May.
    2. Jehiel, Philippe & Samet, Dov, 2005. "Learning to play games in extensive form by valuation," Journal of Economic Theory, Elsevier, vol. 124(2), pages 129-148, October.
    3. Mario Bravo & Mathieu Faure, 2013. "Reinforcement Learning with Restrictions on the Action Set," AMSE Working Papers 1335, Aix-Marseille School of Economics, France, revised 01 Jul 2013.
    4. Panayotis Mertikopoulos & William H. Sandholm, 2016. "Learning in Games via Reinforcement and Regularization," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1297-1324, November.
    5. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    6. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    7. Demichelis, Stefano & Ritzberger, Klaus, 2003. "From evolutionary to strategic stability," Journal of Economic Theory, Elsevier, vol. 113(1), pages 51-75, November.
    8. Oyarzun, Carlos & Sarin, Rajiv, 2013. "Learning and risk aversion," Journal of Economic Theory, Elsevier, vol. 148(1), pages 196-225.
    9. Jacques Durieu & Philippe Solal, 2012. "Models of Adaptive Learning in Game Theory," Chapters, in: Richard Arena & Agnès Festré & Nathalie Lazaric (ed.), Handbook of Knowledge and Economics, chapter 11, Edward Elgar Publishing.
    10. Bernergård, Axel & Mohlin, Erik, 2019. "Evolutionary selection against iteratively weakly dominated strategies," Games and Economic Behavior, Elsevier, vol. 117(C), pages 82-97.
    11. Peiran Jiao, 2015. "The Double-Channeled Effects of Experience on Individual Investment Decisions: Experimental Evidence," Economics Series Working Papers 766, University of Oxford, Department of Economics.
    12. Belianin, A., 2017. "Face to Face to Human Being: Achievements and Challenges of Behavioral Economics," Journal of the New Economic Association, New Economic Association, vol. 34(2), pages 166-175.
    13. Aloys Prinz, 2019. "Learning (Not) to Evade Taxes," Games, MDPI, Open Access Journal, vol. 10(4), pages 1-18, September.
    14. Carlos Laciana & Elke Weber, 2008. "Correcting expected utility for comparisons between alternative outcomes: A unified parameterization of regret and disappointment," Journal of Risk and Uncertainty, Springer, vol. 36(1), pages 1-17, February.
    15. Lahkar, Ratul & Seymour, Robert M., 2013. "Reinforcement learning in population games," Games and Economic Behavior, Elsevier, vol. 80(C), pages 10-38.
    16. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    17. Oyarzun, Carlos & Ruf, Johannes, 2014. "Convergence in models with bounded expected relative hazard rates," Journal of Economic Theory, Elsevier, vol. 154(C), pages 229-244.
    18. Ianni, Antonella, 2014. "Learning strict Nash equilibria through reinforcement," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 148-155.
    19. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    20. Antonio Morales, 2005. "On the Role of the Group Composition for Achieving Optimality," Annals of Operations Research, Springer, vol. 137(1), pages 387-397, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgames:v:5:y:2014:i:1:p:1-25:d:32689. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.