IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p1949-d1632386.html
   My bibliography  Save this article

Economic Analysis of Biofuel Production in Agrophotovoltaic Systems Using Building-Integrated Photovoltaics in South Korea

Author

Listed:
  • Youngjin Kim

    (Department of Industrial and Systems Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea)

  • Sojung Kim

    (Department of Industrial and Systems Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea)

Abstract

Agrophotovoltaic (APV) systems represent innovative agricultural farms and solar power plants, capable of producing electricity and crops simultaneously. Since the solar radiation required to optimize harvests varies by crop type, traditional PV panels face challenges in efficiently adjusting the shading ratio of APV systems. This study evaluates the economic viability of APV systems integrated with building-integrated photovoltaic (BIPV) systems for biofuel production. Specifically, it assesses the production forecast for corn-based biofuel—demand for which is rising due to the mixed-fuel use policy of the Korean government—and the economic feasibility of production in the APV system enhanced by BIPV integration (i.e., the APV–BIPV system). To this end, LCOE (levelized cost of energy) and NPV (net present value) are employed as performance indicators. Additionally, yield data from corn and corn stover harvested in actual APV facilities are utilized to predict bioenergy production. Consequently, the study will analyze the impact of renewable energy production from the proposed APV–BIPV system on achieving the Korean government’s renewable energy production goals and will provide guidelines on the potential benefits for farmers involved in renewable energy production and energy crop harvesting.

Suggested Citation

  • Youngjin Kim & Sojung Kim, 2025. "Economic Analysis of Biofuel Production in Agrophotovoltaic Systems Using Building-Integrated Photovoltaics in South Korea," Energies, MDPI, vol. 18(8), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:1949-:d:1632386
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/1949/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/1949/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sojung Kim & Sumin Kim, 2023. "Economic Feasibility Comparison between Building-Integrated Photovoltaics and Green Systems in Northeast Texas," Energies, MDPI, vol. 16(12), pages 1-14, June.
    2. Costa, Andrea & Keane, Marcus M. & Torrens, J. Ignacio & Corry, Edward, 2013. "Building operation and energy performance: Monitoring, analysis and optimisation toolkit," Applied Energy, Elsevier, vol. 101(C), pages 310-316.
    3. Sojung Kim & Sumin Kim, 2023. "Agricultural Research and Development Center Design with Building Integrated Photovoltaics in Fiji," Energies, MDPI, vol. 17(1), pages 1-14, December.
    4. Linghui Li & Chunyan Dai, 2024. "Internal and External Factors Influencing Rural Households’ Investment Intentions in Building Photovoltaic Integration Projects," Energies, MDPI, vol. 17(5), pages 1-20, February.
    5. Kanagawa, Makoto & Nakata, Toshihiko, 2008. "Assessment of access to electricity and the socio-economic impacts in rural areas of developing countries," Energy Policy, Elsevier, vol. 36(6), pages 2016-2029, June.
    6. Sojung Kim & Burchan Aydin & Sumin Kim, 2021. "Simulation Modeling of a Photovoltaic-Green Roof System for Energy Cost Reduction of a Building: Texas Case Study," Energies, MDPI, vol. 14(17), pages 1-13, September.
    7. Andrea Colantoni & Danilo Monarca & Alvaro Marucci & Massimo Cecchini & Ilaria Zambon & Federico Di Battista & Diego Maccario & Maria Grazia Saporito & Margherita Beruto, 2018. "Solar Radiation Distribution inside a Greenhouse Prototypal with Photovoltaic Mobile Plant and Effects on Flower Growth," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bezerra, Paula & Cruz, Talita & Mazzone, Antonella & Lucena, André F.P. & De Cian, Enrica & Schaeffer, Roberto, 2022. "The multidimensionality of energy poverty in Brazil: A historical analysis," Energy Policy, Elsevier, vol. 171(C).
    2. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Including management and security of supply constraints for designing stand-alone electrification systems in developing countries," Renewable Energy, Elsevier, vol. 80(C), pages 359-369.
    3. Obsa Urgessa Ayana & Jima Degaga, 2022. "Effects of rural electrification on household welfare: a meta-regression analysis," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 69(2), pages 209-261, June.
    4. Brahma, Antara & Saikia, Kangkana & Hiloidhari, Moonmoon & Baruah, D.C., 2016. "GIS based planning of a biomethanation power plant in Assam, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 596-608.
    5. Ashish Kumar Sedai, Rabindra Nepal, and Tooraj Jamasb, 2022. "Electrification and Socio-Economic Empowerment of Women in India," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    6. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    7. Céline Nauges & Jon Strand, 2017. "Water Hauling and Girls’ School Attendance: Some New Evidence from Ghana," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(1), pages 65-88, January.
    8. Bhukta, Rikhia & Pakrashi, Debayan & Saha, Sarani & Sedai, Ashish, 2024. "Community electrification and women’s autonomy," Energy Economics, Elsevier, vol. 137(C).
    9. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Hierarchical methodology to optimize the design of stand-alone electrification systems for rural communities considering technical and social criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 182-196.
    10. Kundu, AMIT & BISWAS, PUJA, 2017. "Learning Outcomes in Elementary Education in Rural India: An Inter-state Comparison," MPRA Paper 94364, University Library of Munich, Germany, revised 04 Mar 2019.
    11. Salmon, Claire & Tanguy, Jeremy, 2016. "Rural Electrification and Household Labor Supply: Evidence from Nigeria," World Development, Elsevier, vol. 82(C), pages 48-68.
    12. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    13. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    14. Bayer, Patrick & Kennedy, Ryan & Yang, Joonseok & Urpelainen, Johannes, 2020. "The need for impact evaluation in electricity access research," Energy Policy, Elsevier, vol. 137(C).
    15. Emmerling, Johannes & Kornek, Ulrike & Zuber, Stéphane, 2024. "Multidimensional welfare indices and the IPCC 6th Assessment Report scenarios," Ecological Economics, Elsevier, vol. 220(C).
    16. Ciro Aprea & Laura Canale & Marco Dell’Isola & Giorgio Ficco & Andrea Frattolillo & Angelo Maiorino & Fabio Petruzziello, 2023. "On the Use of Ultrasonic Flowmeters for Cooling Energy Metering and Sub-Metering in Direct Expansion Systems," Energies, MDPI, vol. 16(12), pages 1-16, June.
    17. Laia Ferrer-Martí & Rafael Pastor & G. Capó & Enrique Velo, 2011. "Optimizing microwind rural electrification projects. A case study in Peru," Journal of Global Optimization, Springer, vol. 50(1), pages 127-143, May.
    18. Richmond, Jennifer & Urpelainen, Johannes, 2019. "Electrification and appliance ownership over time: Evidence from rural India," Energy Policy, Elsevier, vol. 133(C).
    19. Torero, Maximo, 2014. "The Impact of Rural Electrification," MPRA Paper 61425, University Library of Munich, Germany.
    20. Sameh Monna & Adel Juaidi & Ramez Abdallah & Aiman Albatayneh & Patrick Dutournie & Mejdi Jeguirim, 2021. "Towards Sustainable Energy Retrofitting, a Simulation for Potential Energy Use Reduction in Residential Buildings in Palestine," Energies, MDPI, vol. 14(13), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:1949-:d:1632386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.