IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4488-d1162465.html
   My bibliography  Save this article

Grass from Road Verges as a Substrate for Biogas Production

Author

Listed:
  • Robert Czubaszek

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45A Street, 15-351 Bialystok, Poland)

  • Agnieszka Wysocka-Czubaszek

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45A Street, 15-351 Bialystok, Poland)

  • Piotr Banaszuk

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45A Street, 15-351 Bialystok, Poland)

  • Grzegorz Zając

    (Faculty of Production Engineering, University of Life Sciences in Lublin, Głęboka 28 Street, 20-950 Lublin, Poland)

  • Martin J. Wassen

    (Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands)

Abstract

Maintenance of urban green infrastructure generates a large amount of biomass that can be considered a valuable feedstock for biogas production. This study aims to determine the effect of the cutting time and method of substrate preservation on the specific methane yield (SMY) of urban grass collected from road verges and median strips between roadways in wet (WF) and dry fermentation (DF) technology. The grass was collected three times in a growing season, including in spring, summer, and autumn. The biochemical methane potential (BMP) test was performed on fresh grass, grass ensiled without additives, and grass ensiled with microbiological additives. In addition, the energy potentially produced from biogas and the avoided CO 2 emissions were calculated. The highest SMY (274.18 ± 22.59 NL kg VS −1 ) was observed for the fresh grass collected in spring and subjected to WF. At the same time, the lowest CH 4 production (182.63 ± 0.48 NL kg VS −1 ) was found in the grass ensiled without additives, collected in summer, and digested in DF technology. A comparison of the SMY obtained from the same grass samples in the WF and DF technologies revealed that higher CH 4 yields were produced in WF. The electricity and heat production were affected by the time of grass cutting, ensilage method, and AD technology. Generally, less electricity but more heat was produced in DF technology. The least electricity (469–548 kWh t DM −1 ) was produced from the grass cut in spring and subjected to DF, while the most electricity (621–698 kWh t DM −1 ) was obtained from the grass collected in autumn and subjected to WF. In the case of heat production, the situation was reversed. The least heat (1.4–1.9 GJ t DM −1 ) was produced by the grass collected in spring and subjected to WF, while the most heat (2.2–2.7 GJ t DM −1 ) was produced by the grass collected in autumn and subjected to DF. Ensilage decreased the electricity and heat production in almost all the cuttings. The total reduction in CO 2 emissions may amount to 2400 kg CO 2 per 1 hectare of road verges. This significant reduction demonstrates that the use of grass from roadside verges in biogas plants should be considered a feasible option. Even though urban grass should be considered a co-substrate only, it can be a valuable feedstock that may partially substitute energy crops and reduce the area needed for energy purposes. Our results reveal that biogas production from the grass waste in WF technology is a stable process. The cutting time and preservation method do not affect the AD process. In DF technology, fresh grass, especially from the late growing season used as feedstock, extends the time of biomass decomposition and, therefore, should be avoided in a real-life biogas plant.

Suggested Citation

  • Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk & Grzegorz Zając & Martin J. Wassen, 2023. "Grass from Road Verges as a Substrate for Biogas Production," Energies, MDPI, vol. 16(11), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4488-:d:1162465
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4488/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4488/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2020. "GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass," Energies, MDPI, vol. 13(24), pages 1-25, December.
    2. Yanran Fu & Tao Luo & Zili Mei & Jiang Li & Kun Qiu & Yihong Ge, 2018. "Dry Anaerobic Digestion Technologies for Agricultural Straw and Acceptability in China," Sustainability, MDPI, vol. 10(12), pages 1-13, December.
    3. Alessandro Chiumenti & Davide Boscaro & Francesco Da Borso & Luigi Sartori & Andrea Pezzuolo, 2018. "Biogas from Fresh Spring and Summer Grass: Effect of the Harvesting Period," Energies, MDPI, vol. 11(6), pages 1-13, June.
    4. Li, Wanwu & Khalid, Habiba & Zhu, Zhe & Zhang, Ruihong & Liu, Guangqing & Chen, Chang & Thorin, Eva, 2018. "Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin," Applied Energy, Elsevier, vol. 226(C), pages 1219-1228.
    5. Thamsiriroj, T. & Nizami, A.S. & Murphy, J.D., 2012. "Why does mono-digestion of grass silage fail in long term operation?," Applied Energy, Elsevier, vol. 95(C), pages 64-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Aneta Sienkiewicz & Alicja Piotrowska-Niczyporuk & Martin J. Wassen & Andrzej Bajguz, 2024. "Possibilities of Utilising Biomass Collected from Road Verges to Produce Biogas and Biodiesel," Energies, MDPI, vol. 17(7), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Wendelin Wichtmann & Piotr Banaszuk, 2021. "Specific Methane Yield of Wetland Biomass in Dry and Wet Fermentation Technologies," Energies, MDPI, vol. 14(24), pages 1-20, December.
    2. Svetlana Zueva & Andrey A. Kovalev & Yury V. Litti & Nicolò M. Ippolito & Valentina Innocenzi & Ida De Michelis, 2021. "Environmental and Economic Aspects of Biomethane Production from Organic Waste in Russia," Energies, MDPI, vol. 14(17), pages 1-8, August.
    3. Moritz von Cossel & Andrea Bauerle & Meike Boob & Ulrich Thumm & Martin Elsaesser & Iris Lewandowski, 2019. "The Performance of Mesotrophic Arrhenatheretum Grassland under Different Cutting Frequency Regimes for Biomass Production in Southwest Germany," Agriculture, MDPI, vol. 9(9), pages 1-17, September.
    4. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Yiyun Liu & Jun Wu & Jianjun Li & Jingjing Huang, 2023. "The Diffusion Rule of Demand-Oriented Biogas Supply in Distributed Renewable Energy System: An Evolutionary Game-Based Approach," Sustainability, MDPI, vol. 15(19), pages 1-16, September.
    6. Lübken, Manfred & Koch, Konrad & Gehring, Tito & Horn, Harald & Wichern, Marc, 2015. "Parameter estimation and long-term process simulation of a biogas reactor operated under trace elements limitation," Applied Energy, Elsevier, vol. 142(C), pages 352-360.
    7. Łukasz Sobol & Arkadiusz Dyjakon & Alessandro Suardi & Rainer Preißmann, 2021. "Analysis of the Possibility of Energetic Utilization of Biomass Obtained from Grass Mowing of a Large-Area Golf Course—A Case Study of Tuscany," Energies, MDPI, vol. 14(17), pages 1-22, September.
    8. Meng, Xingyao & Wang, Qingping & Zhao, Xixi & Cai, Yafan & Ma, Xuguang & Fu, Jingyi & Wang, Pan & Wang, Yongjing & Liu, Wei & Ren, Lianhai, 2023. "A review of the technologies used for preserving anaerobic digestion inoculum," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    9. Carlos S. Ciria & Marina Sanz & Juan Carrasco & Pilar Ciria, 2019. "Identification of Arable Marginal Lands under Rainfed Conditions for Bioenergy Purposes in Spain," Sustainability, MDPI, vol. 11(7), pages 1-17, March.
    10. Spyridon Achinas & Yu Li & Vasileios Achinas & Gerrit Jan Willem Euverink, 2019. "Biogas Potential from the Anaerobic Digestion of Potato Peels: Process Performance and Kinetics Evaluation," Energies, MDPI, vol. 12(12), pages 1-16, June.
    11. Ó Céileachair, Dónal & O'Shea, Richard & Murphy, Jerry D. & Wall, David M., 2021. "Alternative energy management strategies for large industry in non-gas-grid regions using on-farm biomethane," Applied Energy, Elsevier, vol. 303(C).
    12. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    13. Jing Hou & Bo Hou, 2019. "Farmers’ Adoption of Low-Carbon Agriculture in China: An Extended Theory of the Planned Behavior Model," Sustainability, MDPI, vol. 11(5), pages 1-20, March.
    14. Zheng, Zehui & Liu, Jinhuan & Yuan, Xufeng & Wang, Xiaofen & Zhu, Wanbin & Yang, Fuyu & Cui, Zongjun, 2015. "Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion," Applied Energy, Elsevier, vol. 151(C), pages 249-257.
    15. Shamurad, Burhan & Sallis, Paul & Petropoulos, Evangelos & Tabraiz, Shamas & Ospina, Carolina & Leary, Peter & Dolfing, Jan & Gray, Neil, 2020. "Stable biogas production from single-stage anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 263(C).
    16. Zhao, Bo & Zheng, Pengfei & Yang, Yuyi & Sha, Hao & Cao, Shengxian & Wang, Gong & Zhang, Yanhui, 2022. "Enhanced anaerobic digestion under medium temperature conditions: Augmentation effect of magnetic field and composites formed by titanium dioxide on the foamed nickel," Energy, Elsevier, vol. 257(C).
    17. Alessandro Chiumenti & Andrea Pezzuolo & Davide Boscaro & Francesco da Borso, 2019. "Exploitation of Mowed Grass from Green Areas by Means of Anaerobic Digestion: Effects of Grass Conservation Methods (Drying and Ensiling) on Biogas and Biomethane Yield," Energies, MDPI, vol. 12(17), pages 1-11, August.
    18. Sivabalan Kaniapan & Jagadeesh Pasupuleti & Kartikeyan Patma Nesan & Haris Nalakath Abubackar & Hadiza Aminu Umar & Temidayo Lekan Oladosu & Segun R. Bello & Eldon R. Rene, 2022. "A Review of the Sustainable Utilization of Rice Residues for Bioenergy Conversion Using Different Valorization Techniques, Their Challenges, and Techno-Economic Assessment," IJERPH, MDPI, vol. 19(6), pages 1-30, March.
    19. Xuemei Wang & Shikun Cheng & Zifu Li & Yu Men & Jiajun Wu, 2020. "Impacts of Cellulase and Amylase on Enzymatic Hydrolysis and Methane Production in the Anaerobic Digestion of Corn Straw," Sustainability, MDPI, vol. 12(13), pages 1-12, July.
    20. Liu, Jin & Smith, Stephen R., 2020. "A multi-level biogas model to optimise the energy balance of full-scale sewage sludge conventional and THP anaerobic digestion," Renewable Energy, Elsevier, vol. 159(C), pages 756-766.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4488-:d:1162465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.