IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1751-d1370811.html
   My bibliography  Save this article

Possibilities of Utilising Biomass Collected from Road Verges to Produce Biogas and Biodiesel

Author

Listed:
  • Robert Czubaszek

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45A Street, 15-351 Bialystok, Poland)

  • Agnieszka Wysocka-Czubaszek

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45A Street, 15-351 Bialystok, Poland)

  • Aneta Sienkiewicz

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45A Street, 15-351 Bialystok, Poland)

  • Alicja Piotrowska-Niczyporuk

    (Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245 Bialystok, Poland)

  • Martin J. Wassen

    (Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands)

  • Andrzej Bajguz

    (Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245 Bialystok, Poland)

Abstract

Grass collected as part of roadside maintenance is conventionally subjected to composting, which has the disadvantage of generating significant CO 2 emissions. Thus, it is crucial to find an alternative method for the utilisation of grass waste. The aim of this study was to determine the specific biogas yield (SBY) from the anaerobic mono-digestion of grass from road verges and to assess the content of Fatty Acid Methyl Esters (FAMEs) in grass in relation to the time of cutting and the preservation method of the studied material. The biochemical biogas potential (BBP) test and the FAMEs content were performed on fresh and ensiled grass collected in spring, summer, and autumn. The highest biogas production was obtained from fresh grass cut in spring (715.05 ± 26.43 NL kg VS −1 ), while the minimum SBY was observed for fresh grass cut in summer (540.19 ± 24.32 NL kg VS −1 ). The methane (CH 4 ) content in the biogas ranged between 55.0 ± 2.0% and 60.0 ± 1.0%. The contents of ammonia (NH 3 ) and hydrogen sulphide (H 2 S) in biogas remained below the threshold values for these inhibitors. The highest level of total FAMEs was determined in fresh grass cut in autumn (98.08 ± 19.25 mg g DM −1 ), while the lowest level was detected in fresh grass cut in spring (56.37 ± 7.03 mg g DM −1 ). C16:0 and C18:0, which are ideal for biofuel production, were present in the largest amount (66.87 ± 15.56 mg g DM −1 ) in fresh grass cut in autumn. The ensiling process significantly impacted the content of total FAMEs in spring grass, leading to a reduction in total saturated fatty acids (SFAs) and an increase in total unsaturated fatty acids (USFAs). We conclude that grass biomass collected during the maintenance of road verges is a valuable feedstock for the production of both liquid and gaseous biofuels; however, generating energy from biogas appears to be more efficient than producing biodiesel.

Suggested Citation

  • Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Aneta Sienkiewicz & Alicja Piotrowska-Niczyporuk & Martin J. Wassen & Andrzej Bajguz, 2024. "Possibilities of Utilising Biomass Collected from Road Verges to Produce Biogas and Biodiesel," Energies, MDPI, vol. 17(7), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1751-:d:1370811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1751/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1751/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Minjeong Lee & Minseok Yang & Sangki Choi & Jingyeong Shin & Chanhyuk Park & Si-Kyung Cho & Young Mo Kim, 2019. "Sequential Production of Lignin, Fatty Acid Methyl Esters and Biogas from Spent Coffee Grounds via an Integrated Physicochemical and Biological Process," Energies, MDPI, vol. 12(12), pages 1-13, June.
    2. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk & Grzegorz Zając & Martin J. Wassen, 2023. "Grass from Road Verges as a Substrate for Biogas Production," Energies, MDPI, vol. 16(11), pages 1-23, June.
    3. Jung, Heejung & Kim, Danbee & Choi, Hyungmin & Lee, Changsoo, 2022. "A review of technologies for in-situ sulfide control in anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Westerholm, Maria & Moestedt, Jan & Schnürer, Anna, 2016. "Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance," Applied Energy, Elsevier, vol. 179(C), pages 124-135.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Yapeng & Hu, Wanrong & Qiao, Wei & Westerholm, Maria & Wandera, Simon M. & Dong, Renjie, 2022. "Upgrading the performance of high solids feeding anaerobic digestion of chicken manure under extremely high ammonia level," Renewable Energy, Elsevier, vol. 194(C), pages 13-20.
    2. Qi, Chuanren & Cao, Dingge & Gao, Xingzu & Jia, Sumeng & Yin, Rongrong & Nghiem, Long D. & Li, Guoxue & Luo, Wenhai, 2023. "Optimising organic composition of feedstock to improve microbial dynamics and symbiosis to advance solid-state anaerobic co-digestion of sewage sludge and organic waste," Applied Energy, Elsevier, vol. 351(C).
    3. Palakodeti, Advait & Azman, Samet & Rossi, Barbara & Dewil, Raf & Appels, Lise, 2021. "A critical review of ammonia recovery from anaerobic digestate of organic wastes via stripping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Bi, Shaojie & Westerholm, Maria & Hu, Wanrong & Mahdy, Ahmed & Dong, Taili & Sun, Yingcai & Qiao, Wei & Dong, Renjie, 2021. "The metabolic performance and microbial communities of anaerobic digestion of chicken manure under stressed ammonia condition: A case study of a 10-year successful biogas plant," Renewable Energy, Elsevier, vol. 167(C), pages 644-651.
    5. Yapeng Song & Wei Qiao & Jiahao Zhang & Renjie Dong, 2023. "Process Performance and Functional Microbial Community in the Anaerobic Digestion of Chicken Manure: A Review," Energies, MDPI, vol. 16(12), pages 1-22, June.
    6. Elvira E. Ziganshina & Svetlana S. Bulynina & Ayrat M. Ziganshin, 2022. "Impact of Granular Activated Carbon on Anaerobic Process and Microbial Community Structure during Mesophilic and Thermophilic Anaerobic Digestion of Chicken Manure," Sustainability, MDPI, vol. 14(1), pages 1-20, January.
    7. Ahmadi, Ehsan & Yousefzadeh, Samira & Mokammel, Adel & Miri, Mohammad & Ansari, Mohsen & Arfaeinia, Hossein & Badi, Mojtaba Yegane & Ghaffari, Hamid Reza & Rezaei, Soheila & Mahvi, Amir Hossein, 2020. "Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    8. Zhou, Man & Li, Cheng & Ni, Fuquan & Chen, Anjun & Li, Meiliang & Shen, Guanghui & Deng, Yu & Deng, Liangwei, 2022. "Packed activated carbon particles triggered a more robust syntrophic pathway for acetate oxidation-hydrogenotrophic methanogenesis at extremely high ammonia concentrations," Renewable Energy, Elsevier, vol. 191(C), pages 305-317.
    9. Andersson, Johanna & Helander-Claesson, Jonas & Olsson, Jesper, 2020. "Study on reduced process temperature for energy optimisation in mesophilic digestion: A lab to full-scale study," Applied Energy, Elsevier, vol. 271(C).
    10. Seung Gu Shin & Joonyeob Lee & Trong Hoan Do & Su In Kim & Seokhwan Hwang, 2019. "Application of Response Surface Analysis to Evaluate the Effect of Concentrations of Ammonia and Propionic Acid on Acetate-Utilizing Methanogenesis," Energies, MDPI, vol. 12(17), pages 1-13, September.
    11. Oluwafunmilayo Abiola Aworanti & Oluseye Omotoso Agbede & Samuel Enahoro Agarry & Ayobami Olu Ajani & Oyetola Ogunkunle & Opeyeolu Timothy Laseinde & S. M. Ashrafur Rahman & Islam Md Rizwanul Fattah, 2023. "Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables," Energies, MDPI, vol. 16(8), pages 1-36, April.
    12. Strübing, Dietmar & Moeller, Andreas B. & Mößnang, Bettina & Lebuhn, Michael & Drewes, Jörg E. & Koch, Konrad, 2018. "Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation," Applied Energy, Elsevier, vol. 232(C), pages 543-554.
    13. Solli, Linn & Schnürer, Anna & Horn, Svein J., 2018. "Process performance and population dynamics of ammonium tolerant microorganisms during co-digestion of fish waste and manure," Renewable Energy, Elsevier, vol. 125(C), pages 529-536.
    14. Mohammed Kamil & Khalid Ramadan & Abdul Ghani Olabi & Chaouki Ghenai & Abrar Inayat & Mugdad H. Rajab, 2019. "Desert Palm Date Seeds as a Biodiesel Feedstock: Extraction, Characterization, and Engine Testing," Energies, MDPI, vol. 12(16), pages 1-20, August.
    15. Wu, Di & Li, Lei & Peng, Yun & Yang, Pingjin & Peng, Xuya & Sun, Yongming & Wang, Xiaoming, 2021. "State indicators of anaerobic digestion: A critical review on process monitoring and diagnosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    16. Dalke, Rachel & Demro, Delaney & Khalid, Yusra & Wu, Haoran & Urgun-Demirtas, Meltem, 2021. "Current status of anaerobic digestion of food waste in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    17. Susanne Theuerl & Johanna Klang & Annette Prochnow, 2019. "Process Disturbances in Agricultural Biogas Production—Causes, Mechanisms and Effects on the Biogas Microbiome: A Review," Energies, MDPI, vol. 12(3), pages 1-20, January.
    18. Logan, Mohanakrishnan & Tan, Lea Chua & Nzeteu, Corine Orline & Lens, Piet N.L., 2023. "Effect of selenate on treatment of glycerol containing wastewater in UASB reactors," Renewable Energy, Elsevier, vol. 206(C), pages 97-110.
    19. Vishal Ahuja & Arvind Kumar Bhatt & Balasubramani Ravindran & Yung-Hun Yang & Shashi Kant Bhatia, 2023. "A Mini-Review on Syngas Fermentation to Bio-Alcohols: Current Status and Challenges," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    20. Ankita Das & Sandeep Das & Nandita Das & Prisha Pandey & Birson Ingti & Vladimir Panchenko & Vadim Bolshev & Andrey Kovalev & Piyush Pandey, 2023. "Advancements and Innovations in Harnessing Microbial Processes for Enhanced Biogas Production from Waste Materials," Agriculture, MDPI, vol. 13(9), pages 1-34, August.

    More about this item

    Keywords

    biogas; grass; road verges; FAME;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1751-:d:1370811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.