IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v13y2024i2p21-d1330810.html
   My bibliography  Save this article

The Bioenergetic Potential from Coffee Processing Residues: Towards an Industrial Symbiosis

Author

Listed:
  • Lorena Torres Albarracin

    (School of Mechanical Engineering, University of Campinas (UNICAMP), Rua Mendeleyev 200, Campinas 13083-860, SP, Brazil
    Center for Energy Planning (NIPE), University of Campinas (UNICAMP), Rua Cora Coralina 330, Campinas 13083-896, SP, Brazil)

  • Irina Ramirez Mas

    (Laboratory of Anaerobic Biotechnology, Science and Technology Institute, Federal University of Alfenas (UNIFAL-MG), Rodovia José Aurélio Vilela 11999, Poços de Caldas 37704-376, MG, Brazil)

  • Lucas Tadeu Fuess

    (Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone 1100, Santa Angelina, São Carlos 13563-120, SP, Brazil)

  • Renata Piacentini Rodriguez

    (Laboratory of Anaerobic Biotechnology, Science and Technology Institute, Federal University of Alfenas (UNIFAL-MG), Rodovia José Aurélio Vilela 11999, Poços de Caldas 37704-376, MG, Brazil)

  • Maria Paula Cardeal Volpi

    (Center for Energy Planning (NIPE), University of Campinas (UNICAMP), Rua Cora Coralina 330, Campinas 13083-896, SP, Brazil
    School of Agricultural Engineering (FEAGRI), University of Campinas (Unicamp), Av. Cândido Rondon 501—Cidade Universitária, Campinas 13083-875, SP, Brazil)

  • Bruna de Souza Moraes

    (Center for Energy Planning (NIPE), University of Campinas (UNICAMP), Rua Cora Coralina 330, Campinas 13083-896, SP, Brazil)

Abstract

Coffee processing generates a large amount of organic waste, which has the potential for energy use through biogas production. Although Brazil dominates world coffee production, treating its residue with biogas technology is not a practice, especially due to this product’s seasonality, which hampers continuous digester operation. The implementation of biogas production from coffee residues in a concept of industrial symbiosis could overcome this. This work evaluates the biogas energy potential from the main liquid residues of coffee processing (i.e., mucilage and wash water) and their integration with glycerin and cattle manure. Around 2773 m 3 biogas day −1 would be produced (75% CH 4 ), used as biomethane (734 thousand m 3 year −1 ), or thermal energy (23,000,000 MJ year −1 ), or electricity (2718 MWh year −1 ), which could supply, respectively, all the liquefied petroleum gas (LPG) and diesel demands of the farm, all the thermal energy demands of the grain drying process, as well as electricity for 30 residences. Considering the short coffee season, the results have a broader context for the application of biogas production on coffee processing farms, envisaging that the Agroindustrial Eco-Park concept has the potential to integrate various agroindustrial sectors for energy production, residue exchange, and water recirculation.

Suggested Citation

  • Lorena Torres Albarracin & Irina Ramirez Mas & Lucas Tadeu Fuess & Renata Piacentini Rodriguez & Maria Paula Cardeal Volpi & Bruna de Souza Moraes, 2024. "The Bioenergetic Potential from Coffee Processing Residues: Towards an Industrial Symbiosis," Resources, MDPI, vol. 13(2), pages 1-21, January.
  • Handle: RePEc:gam:jresou:v:13:y:2024:i:2:p:21-:d:1330810
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/13/2/21/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/13/2/21/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Minjeong Lee & Minseok Yang & Sangki Choi & Jingyeong Shin & Chanhyuk Park & Si-Kyung Cho & Young Mo Kim, 2019. "Sequential Production of Lignin, Fatty Acid Methyl Esters and Biogas from Spent Coffee Grounds via an Integrated Physicochemical and Biological Process," Energies, MDPI, vol. 12(12), pages 1-13, June.
    2. Hakawati, Rawan & Smyth, Beatrice M. & McCullough, Geoffrey & De Rosa, Fabio & Rooney, David, 2017. "What is the most energy efficient route for biogas utilization: Heat, electricity or transport?," Applied Energy, Elsevier, vol. 206(C), pages 1076-1087.
    3. Marian Chertow & Weslynne Ashton & Juan Espinosa, 2008. "Industrial Symbiosis in Puerto Rico: Environmentally Related Agglomeration Economies," Regional Studies, Taylor & Francis Journals, vol. 42(10), pages 1299-1312.
    4. Sandra Gonzalez-Piedra & Héctor Hernández-García & Juan M. Perez-Morales & Laura Acosta-Domínguez & Juan-Rodrigo Bastidas-Oyanedel & Eliseo Hernandez-Martinez, 2021. "A Study on the Feasibility of Anaerobic Co-Digestion of Raw Cheese Whey with Coffee Pulp Residues," Energies, MDPI, vol. 14(12), pages 1-11, June.
    5. Chapagain, A.K. & Hoekstra, A.Y., 2007. "The water footprint of coffee and tea consumption in the Netherlands," Ecological Economics, Elsevier, vol. 64(1), pages 109-118, October.
    6. Moraes, Bruna S. & Junqueira, Tassia L. & Pavanello, Lucas G. & Cavalett, Otávio & Mantelatto, Paulo E. & Bonomi, Antonio & Zaiat, Marcelo, 2014. "Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense?," Applied Energy, Elsevier, vol. 113(C), pages 825-835.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Afonso Sellitto & Maria Soares de Lima & Andres Eberhard Friedl Ackermann & Nelson Kadel & Maria Angela Butturi, 2025. "Exploring Industrial Symbiotic Networks: Challenges, Opportunities, and Lessons for Future Implementations," Sustainability, MDPI, vol. 17(4), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bain, Ariana & Shenoy, Megha & Ashton, Weslynne & Chertow, Marian, 2010. "Industrial symbiosis and waste recovery in an Indian industrial area," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1278-1287.
    2. Zhilong Wei & Lei Wang & Hu Liu & Zihao Liu & Haisheng Zhen, 2021. "Numerical Investigation on the Flame Structure and CO/NO Formations of the Laminar Premixed Biogas–Hydrogen Impinging Flame in the Wall Vicinity," Energies, MDPI, vol. 14(21), pages 1-16, November.
    3. Raquel de Souza Deuber & Jéssica Marcon Bressanin & Daniel Santos Fernandes & Henrique Real Guimarães & Mateus Ferreira Chagas & Antonio Bonomi & Leonardo Vasconcelos Fregolente & Marcos Djun Barbosa , 2023. "Production of Sustainable Aviation Fuels from Lignocellulosic Residues in Brazil through Hydrothermal Liquefaction: Techno-Economic and Environmental Assessments," Energies, MDPI, vol. 16(6), pages 1-21, March.
    4. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    5. Angela Neves & Radu Godina & Susana G. Azevedo & João C. O. Matias, 2019. "Current Status, Emerging Challenges, and Future Prospects of Industrial Symbiosis in Portugal," Sustainability, MDPI, vol. 11(19), pages 1-23, October.
    6. Arodudu, Oludunsin Tunrayo & Helming, Katharina & Voinov, Alexey & Wiggering, Hubert, 2017. "Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production – A case study of ethanol and biogas production from maize feedstock," Applied Energy, Elsevier, vol. 198(C), pages 426-439.
    7. Huang, Jiangfeng & Khan, Muhammad Tahir & Perecin, Danilo & Coelho, Suani T. & Zhang, Muqing, 2020. "Sugarcane for bioethanol production: Potential of bagasse in Chinese perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Jakub Mazurkiewicz, 2023. "The Impact of Manure Use for Energy Purposes on the Economic Balance of a Dairy Farm," Energies, MDPI, vol. 16(18), pages 1-22, September.
    9. Yu Zhang & Qing Tian & Huan Hu & Miao Yu, 2019. "Water Footprint of Food Consumption by Chinese Residents," IJERPH, MDPI, vol. 16(20), pages 1-15, October.
    10. Yu Zhang & Jin-he Zhang & Qing Tian, 2021. "Virtual Water Trade in the Service Sector: China’s Inbound Tourism as a Case Study," IJERPH, MDPI, vol. 18(4), pages 1-20, February.
    11. Rawan Hakawati & Beatrice Smyth & Helen Daly & Geoffrey McCullough & David Rooney, 2019. "Is the Fischer-Tropsch Conversion of Biogas-Derived Syngas to Liquid Fuels Feasible at Atmospheric Pressure?," Energies, MDPI, vol. 12(6), pages 1-28, March.
    12. Matthew J. Eckelman & Michelle M. Laboy, 2020. "LCAart: Communicating industrial ecology at a human scale," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 736-747, August.
    13. Grebitus, Carola & Steiner, Bodo & Veeman, Michele, 2015. "The roles of human values and generalized trust on stated preferences when food is labeled with environmental footprints: Insights from Germany," Food Policy, Elsevier, vol. 52(C), pages 84-91.
    14. Maria Claudia Lucchetti & Gabriella Arcese, 2014. "Tourism Management and Industrial Ecology: A Theoretical Review," Sustainability, MDPI, vol. 6(8), pages 1-10, August.
    15. Tong, Huanhuan & Shen, Ye & Zhang, Jingxin & Wang, Chi-Hwa & Ge, Tian Shu & Tong, Yen Wah, 2018. "A comparative life cycle assessment on four waste-to-energy scenarios for food waste generated in eateries," Applied Energy, Elsevier, vol. 225(C), pages 1143-1157.
    16. Giljum, Stefan & Burger, Eva & Hinterberger, Friedrich & Lutter, Stephan & Bruckner, Martin, 2011. "A comprehensive set of resource use indicators from the micro to the macro level," Resources, Conservation & Recycling, Elsevier, vol. 55(3), pages 300-308.
    17. Tanya Tsui & Cecilia Furlan & Alexander Wandl & Arjan Timmeren, 2024. "Spatial Parameters for Circular Construction Hubs: Location Criteria for a Circular Built Environment," Circular Economy and Sustainability, Springer, vol. 4(1), pages 317-338, March.
    18. Fabiana Liar Agudo & Barbara Stolte Bezerra & José Alcides Gobbo & Luis Alberto Bertolucci Paes, 2022. "Unfolding research themes for industrial symbiosis and underlying theories," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1682-1702, December.
    19. Jakub Mazurkiewicz, 2023. "Loss of Energy and Economic Potential of a Biogas Plant Fed with Cow Manure due to Storage Time," Energies, MDPI, vol. 16(18), pages 1-22, September.
    20. Fuess, L.T. & Cruz, R.B.C.M. & Zaiat, M. & Nascimento, C.A.O., 2021. "Diversifying the portfolio of sugarcane biorefineries: Anaerobic digestion as the core process for enhanced resource recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:13:y:2024:i:2:p:21-:d:1330810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.