IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v159y2020icp87-106.html

A feasibility study on the potential, economic, and environmental advantages of biogas production from poultry manure in Iran

Author

Listed:
  • Khoshgoftar Manesh, M.H.
  • Rezazadeh, A.
  • Kabiri, S.

Abstract

Biogas is the gas produced by the anaerobic degradation of organic matter. In addition to the usual uses in burning, it has widespread applications as a raw material in some industries. The biomass of organic matter decomposition is a good fertilizer for agriculture. Unfortunately, despite such a large potential for reasons such as the cheapness of energy in Iran, the use of this benefical capacity has not been addressed so far.

Suggested Citation

  • Khoshgoftar Manesh, M.H. & Rezazadeh, A. & Kabiri, S., 2020. "A feasibility study on the potential, economic, and environmental advantages of biogas production from poultry manure in Iran," Renewable Energy, Elsevier, vol. 159(C), pages 87-106.
  • Handle: RePEc:eee:renene:v:159:y:2020:i:c:p:87-106
    DOI: 10.1016/j.renene.2020.05.173
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120308788
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Alderson, Helen & Cranston, Gemma R. & Hammond, Geoffrey P., 2012. "Carbon and environmental footprinting of low carbon UK electricity futures to 2050," Energy, Elsevier, vol. 48(1), pages 96-107.
    2. Noorollahi, Younes & Kheirrouz, Mehdi & Asl, Hadi Farabi & Yousefi, Hossein & Hajinezhad, Ahmad, 2015. "Biogas production potential from livestock manure in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 748-754.
    3. Taleghani, Giti & Shabani Kia, Akbar, 2005. "Technical–economical analysis of the Saveh biogas power plant," Renewable Energy, Elsevier, vol. 30(3), pages 441-446.
    4. Scarlat, Nicolae & Dallemand, Jean-François & Fahl, Fernando, 2018. "Biogas: Developments and perspectives in Europe," Renewable Energy, Elsevier, vol. 129(PA), pages 457-472.
    5. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    6. Kazem, Hussein A., 2011. "Renewable energy in Oman: Status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3465-3469.
    7. Yahyaee, R. & Ghobadian, B. & Najafi, G., 2013. "Waste fish oil biodiesel as a source of renewable fuel in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 312-319.
    8. Demirbas, Ayhan, 2009. "Political, economic and environmental impacts of biofuels: A review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 108-117, November.
    9. Zareei, Samira, 2018. "Evaluation of biogas potential from livestock manures and rural wastes using GIS in Iran," Renewable Energy, Elsevier, vol. 118(C), pages 351-356.
    10. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    11. MosayebNezhad, M. & Mehr, A.S. & Lanzini, A. & Misul, D. & Santarelli, M., 2019. "Technology review and thermodynamic performance study of a biogas-fed micro humid air turbine," Renewable Energy, Elsevier, vol. 140(C), pages 407-418.
    12. Bahrami, Mohsen & Abbaszadeh, Payam, 2013. "An overview of renewable energies in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 198-208.
    13. Uusitalo, V. & Havukainen, J. & Manninen, K. & Höhn, J. & Lehtonen, E. & Rasi, S. & Soukka, R. & Horttanainen, M., 2014. "Carbon footprint of selected biomass to biogas production chains and GHG reduction potential in transportation use," Renewable Energy, Elsevier, vol. 66(C), pages 90-98.
    14. Modica, Marco, 2017. "Does the construction of biogas plants affect local property values?," Economics Letters, Elsevier, vol. 159(C), pages 169-172.
    15. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Huba, Elisabeth-Maria, 2013. "A review of prefabricated biogas digesters in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 738-748.
    16. Hamzeh, Yahya & Ashori, Alireza & Mirzaei, Babak & Abdulkhani, Ali & Molaei, Masoumeh, 2011. "Current and potential capabilities of biomass for green energy in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4934-4938.
    17. Mittal, Shivika & Ahlgren, Erik O. & Shukla, P.R., 2019. "Future biogas resource potential in India: A bottom-up analysis," Renewable Energy, Elsevier, vol. 141(C), pages 379-389.
    18. Ersin Akyuz & Zuhal Oktay & Ibrahim Dincer, 2010. "Energetic, environmental and economic aspects of a hybrid renewable energy system: a case study," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 6(1), pages 44-54, September.
    19. Zareei, Samira, 2018. "Project scheduling for constructing biogas plant using critical path method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 756-759.
    20. Budzianowski, Wojciech M. & Postawa, Karol, 2017. "Renewable energy from biogas with reduced carbon dioxide footprint: Implications of applying different plant configurations and operating pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 852-868.
    21. Hakawati, Rawan & Smyth, Beatrice M. & McCullough, Geoffrey & De Rosa, Fabio & Rooney, David, 2017. "What is the most energy efficient route for biogas utilization: Heat, electricity or transport?," Applied Energy, Elsevier, vol. 206(C), pages 1076-1087.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yijia Zhang & Qinqing Bo & Xintian Ma & Yating Du & Xinyi Du & Liyang Xu & Yadong Yang, 2023. "Solid–Liquid Separation and Its Environmental Impact on Manure Treatment in Scaled Pig Farms—Evidence Based on Life Cycle Assessment," Agriculture, MDPI, vol. 13(12), pages 1-21, December.
    2. Rezazadeh, Ali Akbar & Avami, Akram, 2024. "An integrated policy approach for sustainable decarbonization pathways of energy system in a city under climate change scenarios," Energy Policy, Elsevier, vol. 195(C).
    3. Dulatbay Yerassyl & Yu Jin & Sugirbaeva Zhanar & Kazambayeva Aigul & Yessengaliyeva Saltanat, 2022. "The Current Status and Lost Biogas Production Potential of Kazakhstan from Anaerobic Digestion of Livestock and Poultry Manure," Energies, MDPI, vol. 15(9), pages 1-11, April.
    4. Mehrabian, M.J. & Khoshgoftar Manesh, M.H., 2023. "4E, risk, diagnosis, and availability evaluation for optimal design of a novel biomass-solar-wind driven polygeneration system," Renewable Energy, Elsevier, vol. 219(P2).
    5. Muñoz, P. & González-Menorca, C. & Sánchez-Vázquez, R. & Sanchez-Prieto, J. & Fraile Del Pozo, A., 2024. "Determining biomethane potential from animal-source industry wastes by anaerobic digestion: A case study from La rioja, Spain," Renewable Energy, Elsevier, vol. 235(C).
    6. Qian Li & Jingjing Wang & Xiaoyang Wang & Yubin Wang, 2022. "The Impact of Training on Beef Cattle Farmers’ Installation of Biogas Digesters," Energies, MDPI, vol. 15(9), pages 1-14, April.
    7. Gonçalves Rigueira Pinheiro Castro, Pedro Henrique & Filho, Delly Oliveira & Rosa, André Pereira & Navas Gracia, Luis Manuel & Almeida Silva, Thais Cristina, 2024. "Comparison of externalities of biogas and photovoltaic solar energy for energy planning," Energy Policy, Elsevier, vol. 188(C).
    8. Najafi, Fatemeh & Sedaghat, Ahmad & Mostafaeipour, Ali & Issakhov, Alibek, 2021. "Location assessment for producing biodiesel fuel from Jatropha Curcas in Iran," Energy, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.
    2. Zaharin, M.S.M. & Abdullah, N.R. & Najafi, G. & Sharudin, H. & Yusaf, T., 2017. "Effects of physicochemical properties of biodiesel fuel blends with alcohol on diesel engine performance and exhaust emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 475-493.
    3. Norouzi, Maryam & Yeganeh, Mansour & Yusaf, Talal, 2021. "Landscape framework for the exploitation of renewable energy resources and potentials in urban scale (case study: Iran)," Renewable Energy, Elsevier, vol. 163(C), pages 300-319.
    4. Khalil, Munawar & Berawi, Mohammed Ali & Heryanto, Rudi & Rizalie, Akhmad, 2019. "Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 323-331.
    5. Khishtandar, Soheila & Zandieh, Mostafa & Dorri, Behrouz, 2017. "A multi criteria decision making framework for sustainability assessment of bioenergy production technologies with hesitant fuzzy linguistic term sets: The case of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1130-1145.
    6. Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
    7. Zareei, Samira, 2018. "Project scheduling for constructing biogas plant using critical path method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 756-759.
    8. Elena Tamburini & Mattias Gaglio & Giuseppe Castaldelli & Elisa Anna Fano, 2020. "Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    9. Şenol, Halil & Ali Dereli̇, Mehmet & Özbilgin, Ferdi, 2021. "Investigation of the distribution of bovine manure-based biomethane potential using an artificial neural network in Turkey to 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Sehatpour, Mohammad-Hadi & Kazemi, Aliyeh & Sehatpour, Hesam-eddin, 2017. "Evaluation of alternative fuels for light-duty vehicles in Iran using a multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 295-310.
    11. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    12. Noorollahi, Younes & Pourarshad, Meysam & Veisi, Alireza, 2021. "The synergy of renewable energies for sustainable energy systems development in oil-rich nations; case of Iran," Renewable Energy, Elsevier, vol. 173(C), pages 561-568.
    13. Roozbeh Feiz & Jonas Ammenberg & Annika Björn & Yufang Guo & Magnus Karlsson & Yonghui Liu & Yuxian Liu & Laura Shizue Moriga Masuda & Alex Enrich-Prast & Harald Rohracher & Kristina Trygg & Sepehr Sh, 2019. "Biogas Potential for Improved Sustainability in Guangzhou, China—A Study Focusing on Food Waste on Xiaoguwei Island," Sustainability, MDPI, vol. 11(6), pages 1-25, March.
    14. Wakeel, Muhammad & Hayat, Tasawer & Shah, Noor Samad & Iqbal, Jibran & Haq Khan, Zia Ul & Shah, Ghulam Mustafa & Rasool, Atta, 2023. "Biogas Energy Resources in Pakistan Status, Potential, and Barriers," Utilities Policy, Elsevier, vol. 84(C).
    15. Alessandro Casasso & Marta Puleo & Deborah Panepinto & Mariachiara Zanetti, 2021. "Economic Viability and Greenhouse Gas (GHG) Budget of the Biomethane Retrofit of Manure-Operated Biogas Plants: A Case Study from Piedmont, Italy," Sustainability, MDPI, vol. 13(14), pages 1-18, July.
    16. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    17. Hossain, Md. Sanowar & Das, Barun K. & Das, Arnob & Roy, Tamal Krishna, 2024. "Investigating the techno-economic and environmental feasibility of biogas-based power generation potential using food waste in Bangladesh," Renewable Energy, Elsevier, vol. 232(C).
    18. Ajlan, Abdullah & Tan, Chee Wei & Abdilahi, Abdirahman Mohamed, 2017. "Assessment of environmental and economic perspectives for renewable-based hybrid power system in Yemen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 559-570.
    19. Andrea Baccioli & Lorenzo Ferrari & Romain Guiller & Oumayma Yousfi & Francesco Vizza & Umberto Desideri, 2019. "Feasibility Analysis of Bio-Methane Production in a Biogas Plant: A Case Study," Energies, MDPI, vol. 12(3), pages 1-16, February.
    20. Rawan Hakawati & Beatrice Smyth & Helen Daly & Geoffrey McCullough & David Rooney, 2019. "Is the Fischer-Tropsch Conversion of Biogas-Derived Syngas to Liquid Fuels Feasible at Atmospheric Pressure?," Energies, MDPI, vol. 12(6), pages 1-28, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:159:y:2020:i:c:p:87-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.