IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p709-d1583293.html
   My bibliography  Save this article

Hydrogen Production from Renewable and Non-Renewable Sources with a Focus on Bio-Hydrogen from Giant reed ( Arundo donax L.), a Review

Author

Listed:
  • Ciro Vasmara

    (CREA—Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture, Via Salaria 31, 00015 Monterotondo, Italy)

  • Stefania Galletti

    (CREA—Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Via di Corticella 133, 40128 Bologna, Italy)

  • Stefano Cianchetta

    (CREA—Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Via di Corticella 133, 40128 Bologna, Italy)

  • Enrico Ceotto

    (CREA—Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture, Via Beccastecca 345, 41018 S. Cesario sul Panaro, Italy)

Abstract

In the last five years, the use of hydrogen as an energy carrier has received rising attention because it can be used in internal combustion and jet engines, and it can even generate electricity in fuel cells. The scope of this work was to critically review the methods of H 2 production from renewable and non-renewable sources, with a focus on bio-H 2 production from the perennial grass giant reed ( Arundo donax L.) due to its outstanding biomass yield. This lignocellulosic biomass appears as a promising feedstock for bio-H 2 production, with a higher yield in dark fermentation than photo-fermentation (217 vs. 87 mL H 2 g −1 volatile solids on average). The H 2 production can reach 202 m 3 Mg −1 of giant reed dry matter. Assuming the average giant reed dry biomass yield (30.3 Mg ha −1 y −1 ), the attainable H 2 yield could be 6060 m 3 ha −1 y −1 . A synthetic but comprehensive review of methods of H 2 production from non-renewable sources is first presented, and then a more detailed analysis of renewable sources is discussed with emphasis on giant reed. Perspectives and challenges of bio-H 2 production, including storage and transportation, are also discussed.

Suggested Citation

  • Ciro Vasmara & Stefania Galletti & Stefano Cianchetta & Enrico Ceotto, 2025. "Hydrogen Production from Renewable and Non-Renewable Sources with a Focus on Bio-Hydrogen from Giant reed ( Arundo donax L.), a Review," Energies, MDPI, vol. 18(3), pages 1-29, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:709-:d:1583293
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/709/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/709/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Domagoj Talapko & Jasminka Talapko & Ivan Erić & Ivana Škrlec, 2023. "Biological Hydrogen Production from Biowaste Using Dark Fermentation, Storage and Transportation," Energies, MDPI, vol. 16(8), pages 1-16, April.
    2. Ciro Vasmara & Stefano Cianchetta & Rosa Marchetti & Enrico Ceotto & Stefania Galletti, 2021. "Potassium Hydroxyde Pre-Treatment Enhances Methane Yield from Giant Reed ( Arundo donax L.)," Energies, MDPI, vol. 14(3), pages 1-12, January.
    3. Andreas Otto Wagner & Nina Lackner & Mira Mutschlechner & Eva Maria Prem & Rudolf Markt & Paul Illmer, 2018. "Biological Pretreatment Strategies for Second-Generation Lignocellulosic Resources to Enhance Biogas Production," Energies, MDPI, vol. 11(7), pages 1-14, July.
    4. Li, Wanwu & Khalid, Habiba & Zhu, Zhe & Zhang, Ruihong & Liu, Guangqing & Chen, Chang & Thorin, Eva, 2018. "Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin," Applied Energy, Elsevier, vol. 226(C), pages 1219-1228.
    5. Vasmara, Ciro & Marchetti, Rosa & Carminati, Domenico, 2021. "Wastewater from the production of lactic acid bacteria as feedstock in anaerobic digestion," Energy, Elsevier, vol. 229(C).
    6. Dell’Omo, Pier Paolo & Spena, Vincenzo Andrea, 2020. "Mechanical pretreatment of lignocellulosic biomass to improve biogas production: Comparison of results for giant reed and wheat straw," Energy, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ciro Vasmara & Stefania Galletti & Stefano Cianchetta & Enrico Ceotto, 2023. "Advancements in Giant Reed ( Arundo donax L.) Biomass Pre-Treatments for Biogas Production: A Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    2. Mariana Abreu & Luís Silva & Belina Ribeiro & Alice Ferreira & Luís Alves & Susana M. Paixão & Luísa Gouveia & Patrícia Moura & Florbela Carvalheiro & Luís C. Duarte & Ana Luisa Fernando & Alberto Rei, 2022. "Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review," Energies, MDPI, vol. 15(12), pages 1-68, June.
    3. Ciro Vasmara & Stefano Cianchetta & Rosa Marchetti & Enrico Ceotto & Stefania Galletti, 2022. "Hydrogen Production from Enzymatic Hydrolysates of Alkali Pre-Treated Giant Reed ( Arundo donax L.)," Energies, MDPI, vol. 15(13), pages 1-17, July.
    4. Alfonso García Álvaro & César Ruiz Palomar & Israel Díaz Villalobos & Daphne Hermosilla & Raúl Muñoz & Ignacio de Godos, 2024. "Energy Integration of Thermal Pretreatment in Anaerobic Digestion of Wheat Straw," Energies, MDPI, vol. 17(9), pages 1-14, April.
    5. Siswo Sumardiono & Bakti Jos & Agata Advensia Eksa Dewanti & Isa Mahendra & Heri Cahyono, 2021. "Biogas Production from Coffee Pulp and Chicken Feathers Using Liquid- and Solid-State Anaerobic Digestions," Energies, MDPI, vol. 14(15), pages 1-15, August.
    6. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    7. Małgorzata Hawrot-Paw & Aleksander Stańczuk, 2022. "From Waste Biomass to Cellulosic Ethanol by Separate Hydrolysis and Fermentation (SHF) with Trichoderma viride," Sustainability, MDPI, vol. 15(1), pages 1-10, December.
    8. Marco De Sanctis & Valerio Guido Altieri & Emanuele Barca & Luigi di Bitonto & Francesco Tedeschi & Claudio Di Iaconi, 2024. "Comparison Among Thermal Pre-Treatments’ Effectiveness in Increasing Anaerobic Digestibility of Organic Fraction in Municipal Solid Wastes," Energies, MDPI, vol. 17(24), pages 1-13, December.
    9. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. Kumar, Vineet & Malyan, Sandeep Kumar & Apollon, Wilgince & Verma, Pradeep, 2024. "Valorization of pulp and paper industry waste streams into bioenergy and value-added products: An integrated biorefinery approach," Renewable Energy, Elsevier, vol. 228(C).
    11. Dar, Rouf Ahmad & Tsui, To-Hung & Zhang, Le & Smoliński, Adam & Tong, Yen Wah & Mohamed Rasmey, Abdel-Hamied & Liu, Ronghou, 2025. "Recent achievements in magnetic-field-assisted anaerobic digestion for bioenergy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    12. Karol Kupryaniuk & Agnieszka Wójtowicz & Jakub Mazurkiewicz & Tomasz Słowik & Arkadiusz Matwijczuk, 2021. "The Influence of the Pressure-Thermal Agglomeration Methods of Corn Bran on Their Selected Physicochemical Properties and Biogas Efficiency," Energies, MDPI, vol. 14(21), pages 1-26, October.
    13. Ciro Vasmara & Stefano Cianchetta & Rosa Marchetti & Enrico Ceotto & Stefania Galletti, 2021. "Potassium Hydroxyde Pre-Treatment Enhances Methane Yield from Giant Reed ( Arundo donax L.)," Energies, MDPI, vol. 14(3), pages 1-12, January.
    14. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Josipa Pavičić & Karolina Novak Mavar & Vladislav Brkić & Katarina Simon, 2022. "Biogas and Biomethane Production and Usage: Technology Development, Advantages and Challenges in Europe," Energies, MDPI, vol. 15(8), pages 1-28, April.
    16. Chenchen Gui & Lida Wang & Guoshun Liu & Ajibola T. Ogunbiyi & Wenzhi Li, 2025. "The Catalytic Valorization of Lignin from Biomass for the Production of Liquid Fuels," Energies, MDPI, vol. 18(6), pages 1-41, March.
    17. Deslin Nadar & Kubendren Naicker & David Lokhat, 2020. "Ultrasonically-Assisted Dissolution of Sugarcane Bagasse during Dilute Acid Pretreatment: Experiments and Kinetic Modeling," Energies, MDPI, vol. 13(21), pages 1-18, October.
    18. Shamurad, Burhan & Sallis, Paul & Petropoulos, Evangelos & Tabraiz, Shamas & Ospina, Carolina & Leary, Peter & Dolfing, Jan & Gray, Neil, 2020. "Stable biogas production from single-stage anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 263(C).
    19. Zhao, Bo & Zheng, Pengfei & Yang, Yuyi & Sha, Hao & Cao, Shengxian & Wang, Gong & Zhang, Yanhui, 2022. "Enhanced anaerobic digestion under medium temperature conditions: Augmentation effect of magnetic field and composites formed by titanium dioxide on the foamed nickel," Energy, Elsevier, vol. 257(C).
    20. Liu, Jin & Smith, Stephen R., 2020. "A multi-level biogas model to optimise the energy balance of full-scale sewage sludge conventional and THP anaerobic digestion," Renewable Energy, Elsevier, vol. 159(C), pages 756-766.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:709-:d:1583293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.