IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6497-d459100.html
   My bibliography  Save this article

GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass

Author

Listed:
  • Robert Czubaszek

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45A Str., 15-351 Bialystok, Poland)

  • Agnieszka Wysocka-Czubaszek

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45A Str., 15-351 Bialystok, Poland)

  • Piotr Banaszuk

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45A Str., 15-351 Bialystok, Poland)

Abstract

We conducted the Life Cycle Analysis (LCA) of energy production from biogas for maize and three types of wetland biomass: reed Phragmites australis , sedges Carex elata, and Carex gracilis , and “grassy vegetation” of wet meadows (WM). Biogas energy produced from maize reached over 90 GJ ha −1 , which was more than four times higher than that gained from wetland biomass. However, an estimation of energy efficiency (EE) calculated as a ratio of energy input to the energy produced in a biogas plant showed that the wet fermentation (WF) of maize was similar to the values obtained for dry fermentation (DF) of sedge biomass (~0.30 GJ GJ −1 ). The greenhouse gases (GHG) emissions released during preparation of the feedstock and operation of the biogas plant were 150 g CO 2 eq. kWh el. −1 for DF of sedges and 262 g CO 2 eq. kWh el. −1 for WF of Phragmites . Compared to the prevailing coal-based power generation in Central Europe, anaerobic digestion (AD) of wetland biomass could contribute to a reduction in GHG emissions by 74% to 85%. However, calculations covering the GHG emissions during the entire process “from field to field” seem to disqualify AD of conservation biomass as valid low-GHG energy supply technology. Estimated emissions ranged between 795 g CO 2 eq. kWh el. −1 for DF of Phragmites and 2738 g CO 2 eq. kWh el. −1 for the WM and, in most cases, exceeded those related to fossil fuel technologies.

Suggested Citation

  • Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2020. "GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass," Energies, MDPI, vol. 13(24), pages 1-25, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6497-:d:459100
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6497/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6497/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Bin & Chen, Shaoqing, 2013. "Life cycle assessment of coupling household biogas production to agricultural industry: A case study of biogas-linked persimmon cultivation and processing system," Energy Policy, Elsevier, vol. 62(C), pages 707-716.
    2. Ciro Florio & Gabriella Fiorentino & Fabiana Corcelli & Sergio Ulgiati & Stefano Dumontet & Joshua Güsewell & Ludger Eltrop, 2019. "A Life Cycle Assessment of Biomethane Production from Waste Feedstock Through Different Upgrading Technologies," Energies, MDPI, vol. 12(4), pages 1-12, February.
    3. Buratti, C. & Barbanera, M. & Fantozzi, F., 2013. "Assessment of GHG emissions of biomethane from energy cereal crops in Umbria, Italy," Applied Energy, Elsevier, vol. 108(C), pages 128-136.
    4. Sands, Ronald D. & Malcolm, Scott A. & Suttles, Shellye A. & Marshall, Elizabeth, 2017. "Dedicated Energy Crops and Competition for Agricultural Land," Economic Research Report 252445, United States Department of Agriculture, Economic Research Service.
    5. Popp, J. & Lakner, Z. & Harangi-Rákos, M. & Fári, M., 2014. "The effect of bioenergy expansion: Food, energy, and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 559-578.
    6. Hijazi, O. & Munro, S. & Zerhusen, B. & Effenberger, M., 2016. "Review of life cycle assessment for biogas production in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1291-1300.
    7. Alessandro Agostini & Ferdinando Battini & Jacopo Giuntoli & Vincenzo Tabaglio & Monica Padella & David Baxter & Luisa Marelli & Stefano Amaducci, 2015. "Environmentally Sustainable Biogas? The Key Role of Manure Co-Digestion with Energy Crops," Energies, MDPI, vol. 8(6), pages 1-32, June.
    8. Hartung, Christina & Andrade, Diana & Dandikas, Vasilis & Eickenscheidt, Tim & Drösler, Matthias & Zollfrank, Cordt & Heuwinkel, Hauke, 2020. "Suitability of paludiculture biomass as biogas substrate − biogas yield and long-term effects on anaerobic digestion," Renewable Energy, Elsevier, vol. 159(C), pages 64-71.
    9. Kari-Anne Lyng & Andreas Brekke, 2019. "Environmental Life Cycle Assessment of Biogas as a Fuel for Transport Compared with Alternative Fuels," Energies, MDPI, vol. 12(3), pages 1-12, February.
    10. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    11. Kluts, Ingeborg & Wicke, Birka & Leemans, Rik & Faaij, André, 2017. "Sustainability constraints in determining European bioenergy potential: A review of existing studies and steps forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 719-734.
    12. Mezzullo, William G. & McManus, Marcelle C. & Hammond, Geoff P., 2013. "Life cycle assessment of a small-scale anaerobic digestion plant from cattle waste," Applied Energy, Elsevier, vol. 102(C), pages 657-664.
    13. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    14. Hoekman, S. Kent & Broch, Amber, 2018. "Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part II – Biodiversity, land use change, GHG emissions, and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3159-3177.
    15. Pereira, L.G. & Cavalett, O. & Bonomi, A. & Zhang, Y. & Warner, E. & Chum, H.L., 2019. "Comparison of biofuel life-cycle GHG emissions assessment tools: The case studies of ethanol produced from sugarcane, corn, and wheat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 1-12.
    16. Budzianowski, Wojciech M. & Postawa, Karol, 2017. "Renewable energy from biogas with reduced carbon dioxide footprint: Implications of applying different plant configurations and operating pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 852-868.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Wendelin Wichtmann & Piotr Banaszuk, 2021. "Specific Methane Yield of Wetland Biomass in Dry and Wet Fermentation Technologies," Energies, MDPI, vol. 14(24), pages 1-20, December.
    2. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk & Grzegorz Zając & Martin J. Wassen, 2023. "Grass from Road Verges as a Substrate for Biogas Production," Energies, MDPI, vol. 16(11), pages 1-23, June.
    3. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Wendelin Wichtmann & Grzegorz Zając & Piotr Banaszuk, 2023. "Common Reed and Maize Silage Co-Digestion as a Pathway towards Sustainable Biogas Production," Energies, MDPI, vol. 16(2), pages 1-25, January.
    4. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2022. "Importance of Feedstock in a Small-Scale Agricultural Biogas Plant," Energies, MDPI, vol. 15(20), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena Tamburini & Mattias Gaglio & Giuseppe Castaldelli & Elisa Anna Fano, 2020. "Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    2. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    3. Achinas, Spyridon & Willem Euverink, Gerrit Jan, 2020. "Rambling facets of manure-based biogas production in Europe: A briefing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Izabela Samson-Bręk & Marlena Owczuk & Anna Matuszewska & Krzysztof Biernat, 2022. "Environmental Assessment of the Life Cycle of Electricity Generation from Biogas in Polish Conditions," Energies, MDPI, vol. 15(15), pages 1-22, August.
    5. Pierie, F. & van Someren, C.E.J. & Benders, R.M.J. & Bekkering, J. & van Gemert, W.J.Th. & Moll, H.C., 2015. "Environmental and energy system analysis of bio-methane production pathways: A comparison between feedstocks and process optimizations," Applied Energy, Elsevier, vol. 160(C), pages 456-466.
    6. Sica, Daniela & Esposito, Benedetta & Supino, Stefania & Malandrino, Ornella & Sessa, Maria Rosaria, 2023. "Biogas-based systems: An opportunity towards a post-fossil and circular economy perspective in Italy," Energy Policy, Elsevier, vol. 182(C).
    7. Adams, P.W.R. & Mezzullo, W.G. & McManus, M.C., 2015. "Biomass sustainability criteria: Greenhouse gas accounting issues for biogas and biomethane facilities," Energy Policy, Elsevier, vol. 87(C), pages 95-109.
    8. Giovanni Ferrari & Federico Ioverno & Marco Sozzi & Francesco Marinello & Andrea Pezzuolo, 2021. "Land-Use Change and Bioenergy Production: Soil Consumption and Characterization of Anaerobic Digestion Plants," Energies, MDPI, vol. 14(13), pages 1-14, July.
    9. Yazan, Devrim Murat & Fraccascia, Luca & Mes, Martijn & Zijm, Henk, 2018. "Cooperation in manure-based biogas production networks: An agent-based modeling approach," Applied Energy, Elsevier, vol. 212(C), pages 820-833.
    10. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Jarosław Gołębiewski & Dariusz Twaróg & Sebastian Wójcik, 2021. "Regional Diversification of Potential, Production and Efficiency of Use of Biogas and Biomass in Poland," Energies, MDPI, vol. 14(3), pages 1-20, January.
    11. Lauer, Markus & Hansen, Jason K. & Lamers, Patrick & Thrän, Daniela, 2018. "Making money from waste: The economic viability of producing biogas and biomethane in the Idaho dairy industry," Applied Energy, Elsevier, vol. 222(C), pages 621-636.
    12. Mohammadrezaei, Rashed & Zareei, Samira & Behroozi- Khazaei, Nasser, 2018. "Optimum mixing rate in biogas reactors: Energy balance calculations and computational fluid dynamics simulation," Energy, Elsevier, vol. 159(C), pages 54-60.
    13. Rasheed, Rizwan & Tahir, Fizza & Yasar, Abdullah & Sharif, Faiza & Tabinda, Amtul Bari & Ahmad, Sajid Rashid & Wang, Yubo & Su, Yuehong, 2022. "Environmental life cycle analysis of a modern commercial-scale fibreglass composite-based biogas scrubbing system," Renewable Energy, Elsevier, vol. 185(C), pages 1261-1271.
    14. Bidart, Christian & Wichert, Martin & Kolb, Gunther & Held, Michael, 2022. "Biogas catalytic methanation for biomethane production as fuel in freight transport - A carbon footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Rillo, E. & Gandiglio, M. & Lanzini, A. & Bobba, S. & Santarelli, M. & Blengini, G., 2017. "Life Cycle Assessment (LCA) of biogas-fed Solid Oxide Fuel Cell (SOFC) plant," Energy, Elsevier, vol. 126(C), pages 585-602.
    16. Chen, Shaoqing & Chen, Bin, 2014. "Energy efficiency and sustainability of complex biogas systems: A 3-level emergetic evaluation," Applied Energy, Elsevier, vol. 115(C), pages 151-163.
    17. Emma Lindkvist & Maria T. Johansson & Jakob Rosenqvist, 2017. "Methodology for Analysing Energy Demand in Biogas Production Plants—A Comparative Study of Two Biogas Plants," Energies, MDPI, vol. 10(11), pages 1-20, November.
    18. Vo, Truc T.Q. & Rajendran, Karthik & Murphy, Jerry D., 2018. "Can power to methane systems be sustainable and can they improve the carbon intensity of renewable methane when used to upgrade biogas produced from grass and slurry?," Applied Energy, Elsevier, vol. 228(C), pages 1046-1056.
    19. Chinese, D. & Patrizio, P. & Nardin, G., 2014. "Effects of changes in Italian bioenergy promotion schemes for agricultural biogas projects: Insights from a regional optimization model," Energy Policy, Elsevier, vol. 75(C), pages 189-205.
    20. Andrey Kiselev & Elena Magaril & Romen Magaril & Deborah Panepinto & Marco Ravina & Maria Chiara Zanetti, 2019. "Towards Circular Economy: Evaluation of Sewage Sludge Biogas Solutions," Resources, MDPI, vol. 8(2), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6497-:d:459100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.