IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v119y2020ics1364032119307749.html
   My bibliography  Save this article

Rambling facets of manure-based biogas production in Europe: A briefing

Author

Listed:
  • Achinas, Spyridon
  • Willem Euverink, Gerrit Jan

Abstract

The use of biogas has been considered a strategically distinctive option for the entire transition to renewable fuels. The wide gap between the use of fossil- and biomass-based fuels calls into question how the business of gas-based energy must be changed to alter the inequalities between biogas and natural gas. The deployment of biogas-derived methane is delayed in contrast to the syngas-derived methane. Subtle issues are spotted and highlighted amid the application of anaerobic digestion to detect fundamental changes in the bioenergy landscape and underpin the drive for global sustainability; lastly, an outlook is suggested for how the field may progress in the future.

Suggested Citation

  • Achinas, Spyridon & Willem Euverink, Gerrit Jan, 2020. "Rambling facets of manure-based biogas production in Europe: A briefing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  • Handle: RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119307749
    DOI: 10.1016/j.rser.2019.109566
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119307749
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    2. Markus Lauer & Daniela Thrän, 2018. "Flexible Biogas in Future Energy Systems—Sleeping Beauty for a Cheaper Power Generation," Energies, MDPI, vol. 11(4), pages 1-24, March.
    3. Marta Gandiglio & Fabrizio De Sario & Andrea Lanzini & Silvia Bobba & Massimo Santarelli & Gian Andrea Blengini, 2019. "Life Cycle Assessment of a Biogas-Fed Solid Oxide Fuel Cell (SOFC) Integrated in a Wastewater Treatment Plant," Energies, MDPI, vol. 12(9), pages 1-31, April.
    4. Eric Santos-Clotas & Alba Cabrera-Codony & Alba Castillo & Maria J. Martín & Manel Poch & Hèctor Monclús, 2019. "Environmental Decision Support System for Biogas Upgrading to Feasible Fuel," Energies, MDPI, vol. 12(8), pages 1-14, April.
    5. Sareen, Siddharth & Haarstad, Håvard, 2018. "Bridging socio-technical and justice aspects of sustainable energy transitions," Applied Energy, Elsevier, vol. 228(C), pages 624-632.
    6. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    7. Ciro Florio & Gabriella Fiorentino & Fabiana Corcelli & Sergio Ulgiati & Stefano Dumontet & Joshua Güsewell & Ludger Eltrop, 2019. "A Life Cycle Assessment of Biomethane Production from Waste Feedstock Through Different Upgrading Technologies," Energies, MDPI, vol. 12(4), pages 1-12, February.
    8. Akbulut, Abdullah, 2012. "Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdağı case study," Energy, Elsevier, vol. 44(1), pages 381-390.
    9. Yazan, Devrim Murat & Fraccascia, Luca & Mes, Martijn & Zijm, Henk, 2018. "Cooperation in manure-based biogas production networks: An agent-based modeling approach," Applied Energy, Elsevier, vol. 212(C), pages 820-833.
    10. Goulding, D. & Power, N., 2013. "Which is the preferable biogas utilisation technology for anaerobic digestion of agricultural crops in Ireland: Biogas to CHP or biomethane as a transport fuel?," Renewable Energy, Elsevier, vol. 53(C), pages 121-131.
    11. Lizhi Zhang & Fan Li & Bo Sun & Chenghui Zhang, 2019. "Integrated Optimization Design of Combined Cooling, Heating, and Power System Coupled with Solar and Biomass Energy," Energies, MDPI, vol. 12(4), pages 1-21, February.
    12. Stanek, Wojciech & Gazda, Wiesław & Kostowski, Wojciech, 2015. "Thermo-ecological assessment of CCHP (combined cold-heat-and-power) plant supported with renewable energy," Energy, Elsevier, vol. 92(P3), pages 279-289.
    13. Yıldız Koç & Hüseyin Yağlı & Ali Koç, 2019. "Exergy Analysis and Performance Improvement of a Subcritical/Supercritical Organic Rankine Cycle (ORC) for Exhaust Gas Waste Heat Recovery in a Biogas Fuelled Combined Heat and Power (CHP) Engine Thro," Energies, MDPI, vol. 12(4), pages 1-22, February.
    14. Marzio Galeotti, 2007. "Economic Growth And The Quality Of The Environment: Taking Stock," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 9(4), pages 427-454, November.
    15. Gabriel Cucui & Constantin Aurelian Ionescu & Ioana Raluca Goldbach & Mihaela Denisa Coman & Elena Liliana Moiceanu Marin, 2018. "Quantifying the Economic Effects of Biogas Installations for Organic Waste from Agro-Industrial Sector," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    16. Anahita Rabii & Saad Aldin & Yaser Dahman & Elsayed Elbeshbishy, 2019. "A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration," Energies, MDPI, vol. 12(6), pages 1-25, March.
    17. Maria Grahn & Julia Hansson, 2015. "Prospects for domestic biofuels for transport in Sweden 2030 based on current production and future plans," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(3), pages 290-306, May.
    18. Shi, Anqing, 2003. "The impact of population pressure on global carbon dioxide emissions, 1975-1996: evidence from pooled cross-country data," Ecological Economics, Elsevier, vol. 44(1), pages 29-42, February.
    19. Emma Lindkvist & Magnus Karlsson & Jenny Ivner, 2019. "System Analysis of Biogas Production—Part II Application in Food Industry Systems," Energies, MDPI, vol. 12(3), pages 1-17, January.
    20. Frank Geels & J Jasper Deuten, 2006. "Local and global dynamics in technological development: a socio-cognitive perspective on knowledge flows and lessons from reinforced concrete," Science and Public Policy, Oxford University Press, vol. 33(4), pages 265-275, May.
    21. Hijazi, O. & Munro, S. & Zerhusen, B. & Effenberger, M., 2016. "Review of life cycle assessment for biogas production in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1291-1300.
    22. Teymoori Hamzehkolaei, Fatemeh & Amjady, Nima, 2018. "A techno-economic assessment for replacement of conventional fossil fuel based technologies in animal farms with biogas fueled CHP units," Renewable Energy, Elsevier, vol. 118(C), pages 602-614.
    23. Emma Lindkvist & Magnus Karlsson & Jenny Ivner, 2019. "Systems Analysis of Biogas Production—Part I Research Design," Energies, MDPI, vol. 12(5), pages 1-12, March.
    24. Marlena Owczuk & Anna Matuszewska & Stanisław Kruczyński & Wojciech Kamela, 2019. "Evaluation of Using Biogas to Supply the Dual Fuel Diesel Engine of an Agricultural Tractor," Energies, MDPI, vol. 12(6), pages 1-12, March.
    25. Kari-Anne Lyng & Andreas Brekke, 2019. "Environmental Life Cycle Assessment of Biogas as a Fuel for Transport Compared with Alternative Fuels," Energies, MDPI, vol. 12(3), pages 1-12, February.
    26. Swinda F. Pfau & Janneke E. Hagens & Ben Dankbaar & Antoine J. M. Smits, 2014. "Visions of Sustainability in Bioeconomy Research," Sustainability, MDPI, vol. 6(3), pages 1-28, March.
    27. Elia Judith Martínez & Ana Sotres & Cristián B. Arenas & Daniel Blanco & Olegario Martínez & Xiomar Gómez, 2019. "Improving Anaerobic Digestion of Sewage Sludge by Hydrogen Addition: Analysis of Microbial Populations and Process Performance," Energies, MDPI, vol. 12(7), pages 1-15, March.
    28. Gazda, Wiesław & Stanek, Wojciech, 2016. "Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system," Applied Energy, Elsevier, vol. 169(C), pages 138-149.
    29. Li, Wanwu & Khalid, Habiba & Zhu, Zhe & Zhang, Ruihong & Liu, Guangqing & Chen, Chang & Thorin, Eva, 2018. "Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin," Applied Energy, Elsevier, vol. 226(C), pages 1219-1228.
    30. Adam Rose & Dan Wei & Noah Miller & Toon Vandyck & Christian Flachsland, 2018. "Policy Brief—Achieving Paris Climate Agreement Pledges: Alternative Designs for Linking Emissions Trading Systems," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 170-182.
    31. Jha, Priyanka & Schmidt, Stefan, 2017. "Reappraisal of chemical interference in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 954-971.
    32. Rehl, T. & Lansche, J. & Müller, J., 2012. "Life cycle assessment of energy generation from biogas—Attributional vs. consequential approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3766-3775.
    33. Susanne Theuerl & Johanna Klang & Annette Prochnow, 2019. "Process Disturbances in Agricultural Biogas Production—Causes, Mechanisms and Effects on the Biogas Microbiome: A Review," Energies, MDPI, vol. 12(3), pages 1-20, January.
    34. Zappa, William & Junginger, Martin & van den Broek, Machteld, 2019. "Is a 100% renewable European power system feasible by 2050?," Applied Energy, Elsevier, vol. 233, pages 1027-1050.
    35. Juhee Shin & Si-Kyung Cho & Joonyeob Lee & Kwanghyun Hwang & Jae Woo Chung & Hae-Nam Jang & Seung Gu Shin, 2019. "Performance and Microbial Community Dynamics in Anaerobic Digestion of Waste Activated Sludge: Impact of Immigration," Energies, MDPI, vol. 12(3), pages 1-15, February.
    36. Scarlat, Nicolae & Fahl, Fernando & Dallemand, Jean-François & Monforti, Fabio & Motola, Vicenzo, 2018. "A spatial analysis of biogas potential from manure in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 915-930.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    2. Chodkowska-Miszczuk, J. & Martinát, S. & van der Horst, D., 2021. "Changes in feedstocks of rural anaerobic digestion plants: External drivers towards a circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Jakub Mazurkiewicz, 2022. "Analysis of the Energy and Material Use of Manure as a Fertilizer or Substrate for Biogas Production during the Energy Crisis," Energies, MDPI, vol. 15(23), pages 1-20, November.
    5. Patrycja Pochwatka & Alina Kowalczyk-Juśko & Piotr Sołowiej & Agnieszka Wawrzyniak & Jacek Dach, 2020. "Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects," Energies, MDPI, vol. 13(22), pages 1-17, November.
    6. Stolecka, Katarzyna & Rusin, Andrzej, 2021. "Potential hazards posed by biogas plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Hollas, C.E. & Bolsan, A.C. & Chini, A. & Venturin, B. & Bonassa, G. & Cândido, D. & Antes, F.G. & Steinmetz, R.L.R. & Prado, N.V. & Kunz, A., 2021. "Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spyridon Achinas & Demi Martherus & Janneke Krooneman & Gerrit Jan Willem Euverink, 2019. "Preliminary Assessment of a Biogas-Based Power Plant from Organic Waste in the North Netherlands," Energies, MDPI, vol. 12(21), pages 1-15, October.
    2. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    3. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2020. "GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass," Energies, MDPI, vol. 13(24), pages 1-25, December.
    4. Izabela Samson-Bręk & Marlena Owczuk & Anna Matuszewska & Krzysztof Biernat, 2022. "Environmental Assessment of the Life Cycle of Electricity Generation from Biogas in Polish Conditions," Energies, MDPI, vol. 15(15), pages 1-22, August.
    5. Feiz, Roozbeh & Johansson, Maria & Lindkvist, Emma & Moestedt, Jan & Påledal, Sören Nilsson & Svensson, Niclas, 2020. "Key performance indicators for biogas production—methodological insights on the life-cycle analysis of biogas production from source-separated food waste," Energy, Elsevier, vol. 200(C).
    6. Wegener, Moritz & Villarroel Schneider, J. & Malmquist, Anders & Isalgue, Antonio & Martin, Andrew & Martin, Viktoria, 2021. "Techno-economic optimization model for polygeneration hybrid energy storage systems using biogas and batteries," Energy, Elsevier, vol. 218(C).
    7. Zhu, Tong & Curtis, John & Clancy, Matthew, 2019. "Promoting agricultural biogas and biomethane production: Lessons from cross-country studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    10. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Elena Tamburini & Mattias Gaglio & Giuseppe Castaldelli & Elisa Anna Fano, 2020. "Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    12. Coultry, James & Walsh, Eilín & McDonnell, Kevin P., 2013. "Energy and economic implications of anaerobic digestion pasteurisation regulations in Ireland," Energy, Elsevier, vol. 60(C), pages 125-128.
    13. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    14. Marlena Owczuk & Anna Matuszewska & Stanisław Kruczyński & Wojciech Kamela, 2019. "Evaluation of Using Biogas to Supply the Dual Fuel Diesel Engine of an Agricultural Tractor," Energies, MDPI, vol. 12(6), pages 1-12, March.
    15. Rasheed, Rizwan & Tahir, Fizza & Yasar, Abdullah & Sharif, Faiza & Tabinda, Amtul Bari & Ahmad, Sajid Rashid & Wang, Yubo & Su, Yuehong, 2022. "Environmental life cycle analysis of a modern commercial-scale fibreglass composite-based biogas scrubbing system," Renewable Energy, Elsevier, vol. 185(C), pages 1261-1271.
    16. Ekaterina S. Titova, 2019. "Biofuel Application as a Factor of Sustainable Development Ensuring: The Case of Russia," Energies, MDPI, vol. 12(20), pages 1-30, October.
    17. Bidart, Christian & Wichert, Martin & Kolb, Gunther & Held, Michael, 2022. "Biogas catalytic methanation for biomethane production as fuel in freight transport - A carbon footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Atwi, Majed & Barberán, Ramón & Mur, Jesús & Angulo, Ana, 2018. "CO2 Kuznets Curve Revisited: From Cross-Sections to Panel Data Models," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 40, pages 169-196.
    19. Jåstad, Eirik Ogner & Bolkesjø, Torjus Folsland & Trømborg, Erik & Rørstad, Per Kristian, 2020. "The role of woody biomass for reduction of fossil GHG emissions in the future North European energy sector," Applied Energy, Elsevier, vol. 274(C).
    20. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Massimo Cecchini & Francesco Santoro & Antonio Pantaleo, 2020. "Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant," Energies, MDPI, vol. 13(11), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119307749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.