IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8867-d982614.html
   My bibliography  Save this article

Analysis of the Energy and Material Use of Manure as a Fertilizer or Substrate for Biogas Production during the Energy Crisis

Author

Listed:
  • Jakub Mazurkiewicz

    (Ecotechnologies Laboratory, Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland)

Abstract

The main goal of the publication was to show the differences in profit when using manure directly as fertilizer (after the storage period) or as a substrate for biogas plants with a cogeneration unit, and then using the digestate for fertilization purposes. The comparison covers the streams of costs, revenues and profits over the year between 14 October 2021 and 14 October 2022. This period was chosen due to the energy and fertilization crisis caused by the war in Ukraine. Profitability forecasts for biogas investments (including the payback period) are presented, with the reduction of greenhouse gas emissions, i.e., methane and nitrous oxide, taken into account. The performed economic, energy and ecological calculations of manure management can be used as guidelines when considering investing in biogas plants, as well as what is recently becoming a new trend: the carbon footprint of dairy production. Input substrate parameters, gaseous emissions and biogas yields were obtained from own research (manure samples were collected) and from literature data, including guidelines for international and national IPCC protocols.

Suggested Citation

  • Jakub Mazurkiewicz, 2022. "Analysis of the Energy and Material Use of Manure as a Fertilizer or Substrate for Biogas Production during the Energy Crisis," Energies, MDPI, vol. 15(23), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8867-:d:982614
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8867/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8867/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard Twine, 2021. "Emissions from Animal Agriculture—16.5% Is the New Minimum Figure," Sustainability, MDPI, vol. 13(11), pages 1-8, June.
    2. Matthew N. Hayek & Helen Harwatt & William J. Ripple & Nathaniel D. Mueller, 2021. "The carbon opportunity cost of animal-sourced food production on land," Nature Sustainability, Nature, vol. 4(1), pages 21-24, January.
    3. Katarzyna Anna Koryś & Agnieszka Ewa Latawiec & Katarzyna Grotkiewicz & Maciej Kuboń, 2019. "The Review of Biomass Potential for Agricultural Biogas Production in Poland," Sustainability, MDPI, vol. 11(22), pages 1-13, November.
    4. Shaohui Zhang & Yumei Hua & Liangwei Deng, 2016. "Nutrient Status and Contamination Risks from Digested Pig Slurry Applied on a Vegetable Crops Field," IJERPH, MDPI, vol. 13(4), pages 1-11, April.
    5. Grzegorz Piechota & Bartłomiej Igliński, 2021. "Biomethane in Poland—Current Status, Potential, Perspective and Development," Energies, MDPI, vol. 14(6), pages 1-32, March.
    6. Diego Díaz-Vázquez & Susan Caroline Alvarado-Cummings & Demetrio Meza-Rodríguez & Carolina Senés-Guerrero & José de Anda & Misael Sebastián Gradilla-Hernández, 2020. "Evaluation of Biogas Potential from Livestock Manures and Multicriteria Site Selection for Centralized Anaerobic Digester Systems: The Case of Jalisco, México," Sustainability, MDPI, vol. 12(9), pages 1-32, April.
    7. Patrycja Pochwatka & Alina Kowalczyk-Juśko & Piotr Sołowiej & Agnieszka Wawrzyniak & Jacek Dach, 2020. "Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects," Energies, MDPI, vol. 13(22), pages 1-17, November.
    8. Cieślik, Marta & Dach, Jacek & Lewicki, Andrzej & Smurzyńska, Anna & Janczak, Damian & Pawlicka-Kaczorowska, Joanna & Boniecki, Piotr & Cyplik, Paweł & Czekała, Wojciech & Jóźwiakowski, Krzysztof, 2016. "Methane fermentation of the maize straw silage under meso- and thermophilic conditions," Energy, Elsevier, vol. 115(P2), pages 1495-1502.
    9. Gross, Arthur & Bromm, Tobias & Polifka, Steven & Schierhorn, Florian, 2022. "The carbon footprint of milk during the conversion from conventional to organic production on a dairy farm in central Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 42(3).
    10. Achinas, Spyridon & Willem Euverink, Gerrit Jan, 2020. "Rambling facets of manure-based biogas production in Europe: A briefing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Paria Sefeedpari & Rafał Pudełko & Anna Jędrejek & Małgorzata Kozak & Magdalena Borzęcka, 2020. "To What Extent Is Manure Produced, Distributed, and Potentially Available for Bioenergy? A Step toward Stimulating Circular Bio-Economy in Poland," Energies, MDPI, vol. 13(23), pages 1-22, November.
    12. Köninger, Julia & Lugato, Emanuele & Panagos, Panos & Kochupillai, Mrinalini & Orgiazzi, Alberto & Briones, Maria J.I., 2021. "Manure management and soil biodiversity: Towards more sustainable food systems in the EU," Agricultural Systems, Elsevier, vol. 194(C).
    13. Agnieszka A. Pilarska & Krzysztof Pilarski & Mariusz Adamski & Maciej Zaborowicz & Dorota Cais-Sokolińska & Agnieszka Wolna-Maruwka & Alicja Niewiadomska, 2022. "Eco-Friendly and Effective Diatomaceous Earth/Peat (DEP) Microbial Carriers in the Anaerobic Biodegradation of Food Waste Products," Energies, MDPI, vol. 15(9), pages 1-19, May.
    14. Jakub Frankowski & Maciej Zaborowicz & Jacek Dach & Wojciech Czekała & Jacek Przybył, 2020. "Biological Waste Management in the Case of a Pandemic Emergency and Other Natural Disasters. Determination of Bioenergy Production from Floricultural Waste and Modeling of Methane Production Using Dee," Energies, MDPI, vol. 13(11), pages 1-15, June.
    15. Piotr Sołowiej & Patrycja Pochwatka & Agnieszka Wawrzyniak & Krzysztof Łapiński & Andrzej Lewicki & Jacek Dach, 2021. "The Effect of Heat Removal during Thermophilic Phase on Energetic Aspects of Biowaste Composting Process," Energies, MDPI, vol. 14(4), pages 1-14, February.
    16. Jakub Mazurkiewicz, 2022. "Energy and Economic Balance between Manure Stored and Used as a Substrate for Biogas Production," Energies, MDPI, vol. 15(2), pages 1-17, January.
    17. Vellinga, T.V. & de Vries, M., 2018. "Effectiveness of climate change mitigation options considering the amount of meat produced in dairy systems," Agricultural Systems, Elsevier, vol. 162(C), pages 136-144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jakub Mazurkiewicz, 2023. "The Impact of Manure Use for Energy Purposes on the Economic Balance of a Dairy Farm," Energies, MDPI, vol. 16(18), pages 1-22, September.
    2. Jakub Mazurkiewicz & Pola Sidoruk & Jacek Dach & Malgorzata Szumacher-Strabel & Dorota Lechniak & Paul Galama & Abele Kuipers & Ireneusz R. Antkowiak & Adam Cieslak, 2023. "Leverage of Essential Oils on Faeces-Based Methane and Biogas Production in Dairy Cows," Agriculture, MDPI, vol. 13(10), pages 1-11, October.
    3. Jakub Mazurkiewicz, 2023. "Loss of Energy and Economic Potential of a Biogas Plant Fed with Cow Manure due to Storage Time," Energies, MDPI, vol. 16(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakub Mazurkiewicz, 2023. "The Impact of Manure Use for Energy Purposes on the Economic Balance of a Dairy Farm," Energies, MDPI, vol. 16(18), pages 1-22, September.
    2. Jakub Mazurkiewicz & Pola Sidoruk & Jacek Dach & Malgorzata Szumacher-Strabel & Dorota Lechniak & Paul Galama & Abele Kuipers & Ireneusz R. Antkowiak & Adam Cieslak, 2023. "Leverage of Essential Oils on Faeces-Based Methane and Biogas Production in Dairy Cows," Agriculture, MDPI, vol. 13(10), pages 1-11, October.
    3. Jakub Mazurkiewicz, 2023. "Loss of Energy and Economic Potential of a Biogas Plant Fed with Cow Manure due to Storage Time," Energies, MDPI, vol. 16(18), pages 1-22, September.
    4. Patrycja Pochwatka & Alina Kowalczyk-Juśko & Piotr Sołowiej & Agnieszka Wawrzyniak & Jacek Dach, 2020. "Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects," Energies, MDPI, vol. 13(22), pages 1-17, November.
    5. Jakub Mazurkiewicz, 2022. "The Biogas Potential of Oxytree Leaves," Energies, MDPI, vol. 15(23), pages 1-16, November.
    6. Wojciech Czekała & Tomasz Jasiński & Mieczysław Grzelak & Kamil Witaszek & Jacek Dach, 2022. "Biogas Plant Operation: Digestate as the Valuable Product," Energies, MDPI, vol. 15(21), pages 1-11, November.
    7. Bogusława Waliszewska & Mieczysław Grzelak & Eliza Gaweł & Agnieszka Spek-Dźwigała & Agnieszka Sieradzka & Wojciech Czekała, 2021. "Chemical Characteristics of Selected Grass Species from Polish Meadows and Their Potential Utilization for Energy Generation Purposes," Energies, MDPI, vol. 14(6), pages 1-14, March.
    8. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Dariusz Twaróg & Jarosław Gołębiewski & Sebastian Wójcik, 2021. "The Role of Agriculture and Rural Areas in the Development of Autonomous Energy Regions in Poland," Energies, MDPI, vol. 14(13), pages 1-21, July.
    9. Justyna Tarapata & Marcin Zieliński & Justyna Zulewska, 2022. "Valorization of Dairy By-Products: Efficiency of Energy Production from Biogas Obtained in Anaerobic Digestion of Ultrafiltration Permeates," Energies, MDPI, vol. 15(18), pages 1-15, September.
    10. Jakub Frankowski & Wojciech Czekała, 2023. "Agricultural Plant Residues as Potential Co-Substrates for Biogas Production," Energies, MDPI, vol. 16(11), pages 1-14, May.
    11. Stelios Rozakis & Andrea Bartoli & Jacek Dach & Anna Jędrejek & Alina Kowalczyk-Juśko & Łukasz Mamica & Patrycja Pochwatka & Rafał Pudelko & Kesheng Shu, 2021. "Policy Impact on Regional Biogas Using a Modular Modeling Tool," Energies, MDPI, vol. 14(13), pages 1-21, June.
    12. Maciej Dzikuć & Joanna Wyrobek & Łukasz Popławski, 2021. "Economic Determinants of Low-Carbon Development in the Visegrad Group Countries," Energies, MDPI, vol. 14(13), pages 1-12, June.
    13. Czekała, Wojciech & Łukomska, Aleksandra & Pulka, Jakub & Bojarski, Wiktor & Pochwatka, Patrycja & Kowalczyk-Juśko, Alina & Oniszczuk, Anna & Dach, Jacek, 2023. "Waste-to-energy: Biogas potential of waste from coffee production and consumption," Energy, Elsevier, vol. 276(C).
    14. Piotr Sulewski & Wiktor Ignaciuk & Magdalena Szymańska & Adam Wąs, 2023. "Development of the Biomethane Market in Europe," Energies, MDPI, vol. 16(4), pages 1-34, February.
    15. A. Chini & C. E. Hollas & A. C. Bolsan & F. G. Antes & H. Treichel & A. Kunz, 2021. "Treatment of digestate from swine sludge continuous stirred tank reactor to reduce total carbon and total solids content," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12326-12341, August.
    16. Anna Duczkowska & Ewa Kulińska & Zbigniew Plutecki & Joanna Rut, 2022. "Sustainable Agro-Biomass Market for Urban Heating Using Centralized District Heating System," Energies, MDPI, vol. 15(12), pages 1-23, June.
    17. Yermek Abilmazhinov & Kapan Shakerkhan & Vladimir Meshechkin & Yerzhan Shayakhmetov & Nurzhan Nurgaliyev & Anuarbek Suychinov, 2023. "Mathematical Modeling for Evaluating the Sustainability of Biogas Generation through Anaerobic Digestion of Livestock Waste," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    18. Xiong, Yuyu & Guo, Hongxiang & Nor, Datin Dr Mariani Md & Song, Andong & Dai, Li, 2023. "Mineral resources depletion, environmental degradation, and exploitation of natural resources: COVID-19 aftereffects," Resources Policy, Elsevier, vol. 85(PA).
    19. Jacob Rosholm Mortensen & Alastair James Ward & Martin Riis Weisbjerg & Sasha Daniel Hafner & Henrik Bjarne Møller, 2021. "Determination of Nitrogen and Sulphur Mineralization in Batch and Semi-Continuous Anaerobic Digestion Using an Artificial Fiber Bag Technique," Energies, MDPI, vol. 14(14), pages 1-17, July.
    20. Lisa Baldi & Filippo Arfini & Sara Calzolai & Michele Donati, 2023. "An Impact Assessment of GHG Taxation on Emilia-Romagna Dairy Farms through an Agent-Based Model Based on PMP," Land, MDPI, vol. 12(7), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8867-:d:982614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.