IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6735-d1244458.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

The Impact of Manure Use for Energy Purposes on the Economic Balance of a Dairy Farm

Author

Listed:
  • Jakub Mazurkiewicz

    (Ecotechnologies Laboratory, Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland)

Abstract

The use of methane fermentation in mesophilic conditions for the energy use of cow manure and additional co-substrates from the farm can bring a small dairy farm (140 dairy cows) financial benefits of up to EUR 114,159 per year. Taking into account the need to pay for emissions calculated as carbon dioxide equivalent, this profit could be reduced to EUR 81,323 per year. With the traditional direct use of manure, this profit would drop by as much as 60% to the level of EUR 33,944 per year. Therefore, the introduction of fees for emissions may significantly burden current dairy farms. As has already been shown, just compacting and covering the manure (which costs approx. EUR 2000 per year for 140 cows) would give almost twice as much profit—EUR 64,509 per year. Although an investment in a small biogas plant with a cogeneration unit on a family dairy farm may have a payback period of less than 6.5 years and a return of capital employed of 16%, most small farms in the world will not be able to afford its construction without external subsidies. At the same time, it would make it possible to reduce emissions by almost 270 times—from 41,460 to 154 tons of CO 2 eq per year—and the possibility of preserving valuable nutrients and minerals and supporting soil properties in the digestate. Therefore, it seems necessary for Europe to introduce a support system for small- and medium-sized farms with this type of investment in the near future in a much larger form than it has been so far.

Suggested Citation

  • Jakub Mazurkiewicz, 2023. "The Impact of Manure Use for Energy Purposes on the Economic Balance of a Dairy Farm," Energies, MDPI, vol. 16(18), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6735-:d:1244458
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6735/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6735/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard Twine, 2021. "Emissions from Animal Agriculture—16.5% Is the New Minimum Figure," Sustainability, MDPI, vol. 13(11), pages 1-8, June.
    2. Anna Podlasek & Eugeniusz Koda & Magdalena Daria Vaverková, 2021. "The Variability of Nitrogen Forms in Soils Due to Traditional and Precision Agriculture: Case Studies in Poland," IJERPH, MDPI, vol. 18(2), pages 1-28, January.
    3. Matthew N. Hayek & Helen Harwatt & William J. Ripple & Nathaniel D. Mueller, 2021. "The carbon opportunity cost of animal-sourced food production on land," Nature Sustainability, Nature, vol. 4(1), pages 21-24, January.
    4. Andante Hadi Pandyaswargo & Premakumara Jagath Dickella Gamaralalage & Chen Liu & Michael Knaus & Hiroshi Onoda & Faezeh Mahichi & Yanghui Guo, 2019. "Challenges and an Implementation Framework for Sustainable Municipal Organic Waste Management Using Biogas Technology in Emerging Asian Countries," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    5. Diego Díaz-Vázquez & Susan Caroline Alvarado-Cummings & Demetrio Meza-Rodríguez & Carolina Senés-Guerrero & José de Anda & Misael Sebastián Gradilla-Hernández, 2020. "Evaluation of Biogas Potential from Livestock Manures and Multicriteria Site Selection for Centralized Anaerobic Digester Systems: The Case of Jalisco, México," Sustainability, MDPI, vol. 12(9), pages 1-32, April.
    6. Mathot, M. & Lambert, R. & Stilmant, D. & Decruyenaere, V., 2020. "Carbon, nitrogen, phosphorus and potassium flows and losses from solid and semi-solid manures produced by beef cattle in deep litter barns and tied stalls," Agricultural Systems, Elsevier, vol. 178(C).
    7. Jakub Mazurkiewicz, 2022. "The Biogas Potential of Oxytree Leaves," Energies, MDPI, vol. 15(23), pages 1-16, November.
    8. Patrycja Pochwatka & Alina Kowalczyk-Juśko & Piotr Sołowiej & Agnieszka Wawrzyniak & Jacek Dach, 2020. "Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects," Energies, MDPI, vol. 13(22), pages 1-17, November.
    9. Hakawati, Rawan & Smyth, Beatrice M. & McCullough, Geoffrey & De Rosa, Fabio & Rooney, David, 2017. "What is the most energy efficient route for biogas utilization: Heat, electricity or transport?," Applied Energy, Elsevier, vol. 206(C), pages 1076-1087.
    10. Paria Sefeedpari & Rafał Pudełko & Anna Jędrejek & Małgorzata Kozak & Magdalena Borzęcka, 2020. "To What Extent Is Manure Produced, Distributed, and Potentially Available for Bioenergy? A Step toward Stimulating Circular Bio-Economy in Poland," Energies, MDPI, vol. 13(23), pages 1-22, November.
    11. Hamelin, Lorie & Naroznova, Irina & Wenzel, Henrik, 2014. "Environmental consequences of different carbon alternatives for increased manure-based biogas," Applied Energy, Elsevier, vol. 114(C), pages 774-782.
    12. Kamila Klimek & Magdalena Kapłan & Serhiy Syrotyuk & Nikolay Bakach & Nikolay Kapustin & Ryszard Konieczny & Jakub Dobrzyński & Kinga Borek & Dorota Anders & Barbara Dybek & Agnieszka Karwacka & Grzeg, 2021. "Investment Model of Agricultural Biogas Plants for Individual Farms in Poland," Energies, MDPI, vol. 14(21), pages 1-30, November.
    13. Eggemann, Lea & Rau, Florian & Stolten, Detlef, 2023. "The ecological potential of manure utilisation in small-scale biogas plants," Applied Energy, Elsevier, vol. 331(C).
    14. Oehmichen, Katja & Thrän, Daniela, 2017. "Fostering renewable energy provision from manure in Germany – Where to implement GHG emission reduction incentives," Energy Policy, Elsevier, vol. 110(C), pages 471-477.
    15. Mazlan, M. & Najafi, G. & Hoseini, S.S. & Mamat, R. & Alenzi, Raslan A. & Mofijur, M. & Yusaf, T., 2021. "Thermal efficiency analysis of a nanofluid-based micro combined heat and power system using CNG and biogas," Energy, Elsevier, vol. 231(C).
    16. Köninger, Julia & Lugato, Emanuele & Panagos, Panos & Kochupillai, Mrinalini & Orgiazzi, Alberto & Briones, Maria J.I., 2021. "Manure management and soil biodiversity: Towards more sustainable food systems in the EU," Agricultural Systems, Elsevier, vol. 194(C).
    17. Jakub Mazurkiewicz, 2022. "Analysis of the Energy and Material Use of Manure as a Fertilizer or Substrate for Biogas Production during the Energy Crisis," Energies, MDPI, vol. 15(23), pages 1-20, November.
    18. Wojciech Czekała & Tomasz Jasiński & Mieczysław Grzelak & Kamil Witaszek & Jacek Dach, 2022. "Biogas Plant Operation: Digestate as the Valuable Product," Energies, MDPI, vol. 15(21), pages 1-11, November.
    19. Jakub Mazurkiewicz, 2022. "Energy and Economic Balance between Manure Stored and Used as a Substrate for Biogas Production," Energies, MDPI, vol. 15(2), pages 1-17, January.
    20. Józef Ciuła & Sławomir Kowalski & Agnieszka Generowicz & Krzysztof Barbusiński & Zbigniew Matuszak & Krzysztof Gaska, 2023. "Analysis of Energy Generation Efficiency and Reliability of a Cogeneration Unit Powered by Biogas," Energies, MDPI, vol. 16(5), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakub Mazurkiewicz, 2023. "Loss of Energy and Economic Potential of a Biogas Plant Fed with Cow Manure due to Storage Time," Energies, MDPI, vol. 16(18), pages 1-22, September.
    2. Jakub Mazurkiewicz, 2022. "Analysis of the Energy and Material Use of Manure as a Fertilizer or Substrate for Biogas Production during the Energy Crisis," Energies, MDPI, vol. 15(23), pages 1-20, November.
    3. Jakub Mazurkiewicz & Pola Sidoruk & Jacek Dach & Malgorzata Szumacher-Strabel & Dorota Lechniak & Paul Galama & Abele Kuipers & Ireneusz R. Antkowiak & Adam Cieslak, 2023. "Leverage of Essential Oils on Faeces-Based Methane and Biogas Production in Dairy Cows," Agriculture, MDPI, vol. 13(10), pages 1-11, October.
    4. Pochwatka, Patrycja & Rozakis, Stelios & Kowalczyk-Juśko, Alina & Czekała, Wojciech & Qiao, Wei & Nägele, Hans-Joachim & Janczak, Damian & Mazurkiewicz, Jakub & Mazur, Andrzej & Dach, Jacek, 2023. "The energetic and economic analysis of demand-driven biogas plant investment possibility in dairy farm," Energy, Elsevier, vol. 283(C).
    5. Marek Cierpiał-Wolan & Jolanta Stec-Rusiecka & Dariusz Twaróg & Katarzyna Bilińska & Anna Dewalska-Opitek & Bogdan Wierzbiński, 2022. "Relationship between Renewable Biogas Energy Sources and Financial Health of Food Business Operators," Energies, MDPI, vol. 15(16), pages 1-13, August.
    6. Jakub Mazurkiewicz, 2022. "The Biogas Potential of Oxytree Leaves," Energies, MDPI, vol. 15(23), pages 1-16, November.
    7. Wojciech Czekała & Tomasz Jasiński & Mieczysław Grzelak & Kamil Witaszek & Jacek Dach, 2022. "Biogas Plant Operation: Digestate as the Valuable Product," Energies, MDPI, vol. 15(21), pages 1-11, November.
    8. Agnieszka A. Pilarska & Krzysztof Pilarski, 2023. "Bioenergy Generation from Different Types of Waste by Anaerobic Digestion," Energies, MDPI, vol. 16(19), pages 1-4, October.
    9. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    10. Marcin Dębowski & Joanna Kazimierowicz & Anna Nowicka & Magda Dudek & Marcin Zieliński, 2024. "The Use of Hydrodynamic Cavitation to Improve the Anaerobic Digestion of Waste from Dairy Cattle Farming—From Laboratory Tests to Large-Scale Agricultural Biogas Plants," Energies, MDPI, vol. 17(6), pages 1-26, March.
    11. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Paul Fesenfeld, Lukas & Maier, Maiken & Brazzola, Nicoletta & Stolz, Niklas & Sun, Yixian & Kachi, Aya, 2023. "How information, social norms, and experience with novel meat substitutes can create positive political feedback and demand-side policy change," Food Policy, Elsevier, vol. 117(C).
    13. A. Chini & C. E. Hollas & A. C. Bolsan & F. G. Antes & H. Treichel & A. Kunz, 2021. "Treatment of digestate from swine sludge continuous stirred tank reactor to reduce total carbon and total solids content," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12326-12341, August.
    14. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    15. Anna Duczkowska & Ewa Kulińska & Zbigniew Plutecki & Joanna Rut, 2022. "Sustainable Agro-Biomass Market for Urban Heating Using Centralized District Heating System," Energies, MDPI, vol. 15(12), pages 1-23, June.
    16. Yermek Abilmazhinov & Kapan Shakerkhan & Vladimir Meshechkin & Yerzhan Shayakhmetov & Nurzhan Nurgaliyev & Anuarbek Suychinov, 2023. "Mathematical Modeling for Evaluating the Sustainability of Biogas Generation through Anaerobic Digestion of Livestock Waste," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    17. Zhilong Wei & Lei Wang & Hu Liu & Zihao Liu & Haisheng Zhen, 2021. "Numerical Investigation on the Flame Structure and CO/NO Formations of the Laminar Premixed Biogas–Hydrogen Impinging Flame in the Wall Vicinity," Energies, MDPI, vol. 14(21), pages 1-16, November.
    18. Gao, Yuchen & Jiang, Jianguo & Meng, Yuan & Aihemaiti, Aikelaimu & Ju, Tongyao & Chen, Xuejing & Yan, Feng, 2020. "A novel nickel catalyst supported on activated coal fly ash for syngas production via biogas dry reforming," Renewable Energy, Elsevier, vol. 149(C), pages 786-793.
    19. Xiong, Yuyu & Guo, Hongxiang & Nor, Datin Dr Mariani Md & Song, Andong & Dai, Li, 2023. "Mineral resources depletion, environmental degradation, and exploitation of natural resources: COVID-19 aftereffects," Resources Policy, Elsevier, vol. 85(PA).
    20. Hassan El-Ramady & Peter Hajdú & Gréta Törős & Khandsuren Badgar & Xhensila Llanaj & Attila Kiss & Neama Abdalla & Alaa El-Dein Omara & Tamer Elsakhawy & Heba Elbasiouny & Fathy Elbehiry & Megahed Ame, 2022. "Plant Nutrition for Human Health: A Pictorial Review on Plant Bioactive Compounds for Sustainable Agriculture," Sustainability, MDPI, vol. 14(14), pages 1-45, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6735-:d:1244458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.